ZUG User Manual

Page 1/ 38

Author: Md Sarfaraz Khan Version: 6.5

Date 20/05/13

ZUG User Manual
(Version V6.2)

Whilst all reasonable care has been taken to ensure that the
details are true and not misleading at the time of publication,
no liability whatsoever is assumed by Automature LLC, or any
supplier of Automature LLC, with respect to the accuracy or
any use of the information provided herein.

Any license, delivery and support of software require entering
into separate agreements with Automature LLC.

This document may contain confidential information and may
not be modified or reproduced, in whole or in part, or
transmitted in any form to any third party, without the written
approval from Automature LLC.

Copyright © 2012 Automature LLC

All rights reserved.

ZUG User Manual

Page 2/ 38

Author: Md Sarfaraz Khan

Version: 6.5 Date 20/05/13

Revision History

Version Date Name Description of Changes

1.0 2010-09-23 | Nitish Rawat First Edition

1.1 2010-11-04 | Nitish Rawat Revised Edition with illustrative snapshot and new chapters

1.2 2010-11-09 | Nitish Rawat Changes in section ordering

2.2.2 2011-08-30 | Sankha Sil Changes in Atom path, new Option and Features

2.3 2011-09-16 | Sankha Sil Changes in Relative Path and Command Line Macro Value Passing

3.0 2012-01-09 | Sankha Sil New Feature added. Zug uses methods which are dynamically loaded

3.2 2012-03-25 | Sankha Sil New Feature added Zug have Configuration Management for MVM

4.0 2012-03-29 | Sankha Sil New Feature added Zug Reports Results uisng Davos

43 12-06-12 Dipayan Sengupta New Features : BuildTag and TestPlan added

4.4 20-06-12 Dipayan Sengupta New Feature :TopologySet

5.6 02-01-13 Md Sarfaraz Khan Added a trouble shooting , JRE dependence

5.7 22-01-13 Sankha Sil Added a new switch logfilename.

6.2 28-03-13 Md Sarfaraz Khan Added new module Reporting in testlink

6.3 20-05-13 Md Sarfaraz Khan Added command line options (-ignore,-atomexectime) and DB and
script location configurations

ZUG User Manual

Page 3/ 38

Author: Md Sarfaraz Khan Version: 6.5

Date 20/05/13

Contents

Table of Contents

ZUG User Manual
(Version V6.2)...ccuvemrvumsmnmmsensssnsssnsssssnnsssssnnnnnnnns

1
Revision History......iccivimimnmmnnnsssnssnssssnnnsnnnas 2
@0] 3] =] | e IC

1. Introduction.......ccciiiiii i s srrss s s e 5
1.1 DOCUMENE PUMPOSE. ..ttt iieeeiee e aee s ne e e raneeeennneeens 5
1.2 Intended AUdiENCE. ..t 5
2. Concepts and Terminologies........civvierrrrnnnnnnnss 6
2.1 TeSt SUITE. . 6
A A I < 1=] o = 1 TP 6
200G T A (o] o o 6
2.4 MOIECUI. . i i e 6
20 J Y o1 o e] o 6
2.6 TSt Plan. v e 6
2.7 TSt S it 6
2.8 Verification Step.....coviiiiiii 7
2.9 MVM Configuration......c.ccvieiiiiiiiiiisis e eee e 7
IC .4 U 1 0 o 1 o {0 o 1= .
3.1 -TestCaseID=TestO01,....ccciiieiiriiireiire i i aaeeenaes 8
3.2 -Repeat | -NoRepeat.....ccv v 8
3.3 -Autorecover | -NOAULOreCOVEr. . ..o iviiiiii i i i i 8
3.4 -Verbose | NOVerboSe.....cviveiiiiiiiiii i i i 8
3.5 -Debug | NODEDbUG.....viviiiiiiiiiiiie e 9
3.6 -Verify | -NOVerify ..o e 9
3.7 -AtomPath=<location>........cccoiiiiiiiii i 9
3.8 -Include=<location>......ccociiiiiiiii e 9
3.9 -Execute | -NOEXeCUte.. ..o ivii it i e 9
3.10 -$<macroname>=<value>cccciiiiiiiiiiiiiiii e 9
3.11 -TestCycleID=<integer>......ccciiiiiiiiiiiiiii i 10
3.12 -TestPlan=<Product:Release:Sprint:TestPlan>........... 10
3.13 -TestPlanID=<integer>.....ccccoiiiiiiiiiiiiii i e 10
3.14 -TopologySetID=<integer>.........ccvviiiiiiiniiinninnnnns 10
3.15 -TopologySet=<AlphaNumeric>.........cccoeviiiiiiiiinnnnn. 10
3.16 -BuildTag=<AlphaNumeric>........ccocoiiiiiiiiiiic e, 10
3.17 -LogFileName=<AlphaNumeric>...........ccoviiviinnnnnnns 10
3.18 -macrocolumn=<file identifier:column value>........... 11
3.19 -macrofile=<file location>........ccccoviiiiiiiiiie e, 11
3.20 mIgN0OM . it 11
3.21 -atomeXeCtime. . oo 11
4 ZUG ModesS.....cccuiinmmmmnncnmnnnsssnnnssssnsssssnnnsssssnnnsss 12
L2 I = o o [8 oo 1 o o 1= 12
4.2 Developer MOde.ciiiiiii i 12
4.3 Performance MOde......ivviiiiiiii i i i i enes 12
5 Process FIOW......cccciicmmnc s nnnissncsssnnnnsnnnnnnnnnn 14
5.1 Architecture OVervieW......ccvveiiiiiiiii e nee s 14

6 Running your first automated test..................15

ZUG User Manual

Page 4/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13
6.1 Preparing Zermatt for Zug.......cooovviiiiiiiiiiii e 15
6.2 Managing AtOMS. .. ciuiiiiii i e anneas 15
6.3 Preparing Zug for Zermatt...........cooiiiiiiiiii 16
6.4 Executing the automated test...........cooeiiiiiiiiinn, 17
6.5 Viewing results in Zermatt.......c.oooiiiiiiiii 22
6.6 Interpreting the results.......ccooiiviiiiii i 22
6.7 Archival the Log files.......coviiiiii e 25
6.8 Reporting to TestLink......ccovieiiiiii e 25
6.8.1 Basic Terminologies of TestLinK........c.ccvveiiiiiiiiiiinnenn. 25
6.8.2 Preparing ZUG for TestLinK.......cocovivieiiiiiiiieieeen 26
6.8.3 Preparing TestLink For ZUG:.....c.cociiiiiiiiiiiiii i 27
6.8.4 Executing the automated tests..........covviiiiiiii i, 30
7. Implicit Molecule Calls........ccccrviimrnnncessinnnenn 32
7.1 ZCase _Verify . it 32
7.2 ZSteP _Verify i 32
2 T = 1 Y2 Y=Y 1 1= 32
8. Troubleshooting.......ccccvicviciirinc s inrns s s rnr e nnnas 34
8.1 DEBUQG LOG. ittt e 34
8.2 Primitive 10g. ..o it 34
8.3 Database connection problem.........ccocoiiiiiiiinn, 34
8.4 Unable to Archive Log Files......ccoiiiiiiiiiiiiiiiiieeas 35
8.5 License EXpired.....ccooiiiiiiiiiiiiiii e 35
9 ZUGINI.XMI .ovciieiiirirersm s s s s s nnannnns 37
9.1 Inprocess atoms configuration............ccooveiiiiieiiennn. 37

9.2 DB Configuration and Script Locations...........ccvevvvuenns 38

ZUG User Manual Page 5/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

1. Introduction

Zug is Automature’s software test automation tool. Zug provides an execution environment for tests
specified using a high level test specification language namely CHUR. Zug is platform independent,
and can be used on any environment that supports the Java Runtime Environment.

1.1 Document Purpose

The user manual explains you operation of Zug options. You will be able to use several options for
customizing the execution of test cases.

1.2 Intended Audience

The user manual is intended for users who want to learn or run execution of test suites. Test suites are
written in Chur. The test suite file is given as input to Zug.

ZUG User Manual Page 6/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

2. Concepts and Terminologies

2.1 Test Suite

As explained before Test Cases are individual programs designed to test a feature of a product. As
there are usually hundreds or thousands of features in a single application, therefore the number of
Test Cases would be equally high. To manage so many of them, Test Cases are grouped into Zest
Suites.

2.2 Test Case

A Test Case is a program whose purpose is to test a certain feature of a product. It tells the developer
(or whoever else is trying to make the product work) whether the feature is working properly by
verifying the results and if not, help them identify the cause of the malfunction.

The Automature Framework has a hierarchical structure in which 7est Cases are at the core of it.

2.3 Atom

Atoms are the smallest unit of action in Chur. They are entities, such as programs or scripts that can be
executed at the command line level in a shell (e.g. the Command Prompt in Windows). Atoms can be
invoked on the Test Cases or Molecules worksheets in the Test Suite spread sheet on a single line. An
example of an atom can be a program that enters text into a form field inside a web page, or can
simulate a button click.

2.4 Molecule

Molecules are a collection of atoms in a sequence, with the added ability to express more complex
logic. Molecules may call atoms directly, or through other nested molecules. Test Cases, themselves
could be considered Molecules themselves, except that no other test case or molecule can call them.
Example of a molecule can be to simulate a user login, by using the atom examples above.

2.5 Action

A test case is a sequence of one or more Actions. Each Action may take as many arguments as
necessary. An Action atom is expected to return an exit status code that implicitly tells Zug if the
action was successful. By convention a non-zero status is interpreted as a failure. When Zug
encounters a failure status it automatically invokes the appropriate clean up steps.

2.6 Test Plan

Test plan is the comprehensive planning of how features can be tested with the respective test cases in
certain topology sets. Each test plan may contain one or more test cycles which may be executed
during the course of a certain phase of the product.

2.7 Test Step

A Test Step should be specified for each Action of a test case or a Molecule but not for a Verification
Step. It should be monotonically increasing number for each test case action. If two steps of a test case
have the same steps, then the two steps are executable concurrently. Some of these steps can be
considered as initialization steps, few others the action steps and the rest as cleanup steps.

ZUG User Manual Page 7/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

2.8 Verification Step

Each Action of a Test Case may consist of none, or several Verification methods. And each
Verification method may take several arguments as needed. A verification atom is expected to return
an exit status code that implicitly tells Zug if the verification was successful. By convention, a non-
zero status code is interpreted as a failure. When Zug encounters a failure status in verification, it
automatically invokes the corresponding clean up steps.

2.9 MVM Configuration

While running any testcase if it contains more than a certain level of multivalued macro it may fail due
to java jvm max memory which is not sufficient for keeping that many Cartesian producted testcases.
Due to low machine configuration it fails but it can run in high configuration machines. As so from
Zug3.2 version this configuration dependency is introduced in ZugINI.xml as <configuations> tag.
Under that tag there is another type tag <mvm-configurationjvm-max-memorysize="853">. This
name attribute of this tag mainly identifies the machine JVM memory configuration, which helps to
find out what is the JVM max memory it can avail. Under the tags the mvm cardinality is defined
which have the number of cardinality of testcases. Cardinality: the total testcases generated by Zug
doing Cartesian /indexed expansion over the number of MVMs in the testcase.

Below is a example of a configurations tags in ZugINI.xml.

<configurations>
<mvm-configuration jvm-max-memorysize="853">4000</mvm-configuration>
<mvm-configuration jvm-max-memorysize="455">3000</mvm-configuration>
<mvm-configuration jvm-max-memorysize="247">2500</mvm-configuration>
<mvm-configuration jvm-max-memorysize="122">1500</mvm-configuration>

</configurations>

ZUG User Manual Page 8/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

3. ZUG Options

Zug has a set of standard options that are supported in the execution test environment. The syntax the
launching Zug is as follows:

RunZUG.bat [options] FILE.xls

3.1 -TestCaseID=Test001,...

If -TestCaselD is specified, Zug will execute only specific test cases as listed and will ignore the rest.
The value to be specified is comma separated list of Automated Test Case Ids. This option is not
required. By default all test cases specified in the input file are executed.

3.2 -Repeat | -NoRepeat

The -Repeat option allows the user to run a selection of test cases repeatedly, for a specified duration,
or a specified number of iterations. The Longevity tests run the test plan setup and cleanup only once,
and record a single result as the outcome.

Note: Zug debug logs are turned OFF during LONGEVITY MODE to ensure Zug does not consume
too much disk space. By default, -NoRepeat is selected.

-Count=integer

This option specifies number of times the test cases mentioned in the test plan will be executed in
iteration. This should be a number.

Example: -Repeat -Count=5

-Duration=time

This option specifies how long the test cases mentioned in the test suite will be iterated through.
The time value has to specified in

¥days]d

¥hours]h

¥ minutes]m

¥ seconds]s

Example: -Repeat -Duration=3d

Note: -Duration and -Count are mutually exclusive. If both of them are specified on the command
prompt, then -Count takes precedence over -Duration.

3.3 -Autorecover | -NoAutorecover

The option -Autorecover specifies Zug to run cleanup during test plan/test step timeout or failure. By
default, -Autorecover will be selected unless specified otherwise. If -NoAutorecover is specified, then
there are no cleanup steps to execute.

3.4 -Verbose | NoVerbose

The option -Verbose is used to display debug messages on the output console. By default -NoVerbose
will be selected unless explicitly mentioned. The option -NoVerbose does not display any debug
messages on the output console.

ZUG User Manual Page 9/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

3.5 -Debug | NoDebug

The -Debug option is specified to run the Automation in Debug Mode. In this case if any atom is not
implemented then the Zug will prompt with a default atom. By default -NoDebug will be selected
unless explicitly disabled.

3.6 -Verify | -NoVerify

The option -Verify specifies Zug to execute the testcase without verification. By default, - Verify is
selected means ZUG will run verification actions for each testcase unless explicitly -NoVerify is
specified.

3.7 -AtomPath=<location>

This option specifies the location from where ZUG will pick up atoms for Test Automation/Execution.
This should be a fully qualified location and should not be a relative path. We can give multiple
locations by ; separator.

Example: -Atompath=C:\Tests\Atoms

3.8 -Include=<location>

This option specifies the location from where ZUG will pick up molecules and macros for Test
Automation/Execution. The location can be a file name residing in the same directory of that of the
test suite or fully qualified location of the file but it should not be a relative path. We can give multiple
locations by comma separator.

Example: -include=C:\Tests\Molecules

One more powerful feature of this option is to provide name spaces to the test suite included from command line.
The syntax for giving name space in the -include option is

-include=namespace1#filename1,namespace2#filename2

In the test suite when we are using the macros and molecules of the included test suite then we should append
the name space. For example if we are using a macro say $test of filename1 then in the main test suite we should
write $namespace.test.

3.9 -Execute | -NoExecute

-NoExecute mode will verify if the Test Design Excel sheet prepared by the user is syntactically
correct or not. By default -Execute mode is selected unless explicitly specified. If -NoExecute is
selected, Zug will just validate the test suite design sheet, display a list of errors, and exit without
executing any test cases in the test suite.

3.10 -$<macroname>=<value>
-$$<macroname>={<valuel>,<value2>}

This option specifies the macro value of the macro in the chur sheet. If the macro name is not written
in the macro sheet of the chur spread sheet then it will add one while it is passed in the command line.
The macro name should not contain any blank space and the macro value should not contain any
blanks also. The macro value should be normally passed without giving any “”’(quotes). Multi valued
macro is also can be passed by providing the braces({}). It is also possible in providing of macro value
as {1..2} for extended macro values.

ZUG User Manual Page 10/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

3.11 -TestCycleID=<integer>

Use Zermatt to look for TestCyclelD. If it is not provided then Zug will generate a new ID and update
the results under it. By default, Zug always generates a new testcycle in ZERMATT unless explicitly
specified to use an existing TestCycleID. TestCyclelD can be found in ZERMATT page navigating to

4est Lycle Report.
Test Cycle Report TestCycleID

Example: -TestCycleIDl72 I

3.12 -TestPlan=<Product:Release:Sprint:TestPlan>

This is required to upload test case execution results in Zermatt under a particular Test Plan. Instead of
using the testplanid, you can also report to Zermatt by naming the testplan in the following way:

Example: -TestPlan="ZUG:First Release:rc7 sprint:Smoke test plan"

3.13 -TestPlanID=<integer>

This is required to upload test case execution results in Zermatt under a particular Test Plan. Instead of
using the testplan, you can also report to Zermatt by putting the testplanid in the following way:

Example: -TestPlanID=84

3.14 -TopologySetID=<integer>

This is required by Zug to register results in a testcycle for the specified Topology Set. The Topology
Set has to be written in Zermatt and its id is to be specified. The Topology Set Id can be seen in the
Zermatt page as shown below in the status bar of List all Topology Sets for a chosen Test Plan:

TOPOLOGYSET_ID

Example: —TopologySetId

3.15 -TopologySet=<AlphaNumeric>

Instead of using the topologysetid, Zug can register results in a testcycle by specifying the name of the
topologyset. The topologyset set associated with the test cycle should be stated while running zug.

Example: -topologyset="First TopologySet"

3.16 -BuildTag=<AlphaNumeric>

This is required by Zug to upload the name of the Build in Zermatt for a particular sprint. You can
report to Zermatt by naming the BuildTag in the following way:

Example: -BuildTag=Build074

3.17 -LogFileName=<AlphaNumeric>

This is required by Zug to change the logfile names where zug logs the execution
messages(error,debug). The logfile name will be created as <logfilename>-Atom.log , <logfilename>-
Debug.log.

ZUG User Manual Page 11/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

3.18 -macrocolumn=<file identifier:column value>

We can have multiple value column in a test suite for a macro. This option let us select a particular macro value
column for a test suite. The syntax for -macrocolumn is

-macrocolumn=file identifier:column number, file identifier:column number

The file identifier is the file name,default name space or the optional name space provided in the -include option.
If we have provided any optional name space in the -include option then it should be the file identifier in the
-macrocolumn. If any cell of the selected column is empty then it takes the value of the default column cell(1*
column i.e, the “value” column).

3.19 -macrofile=<file location>

This option is used to include a macro text file from command line. The text file contains macro in the
format $macro=value. Each macro should begin in a new line. At run time ZUG treats these macros as
it belongs to the main test suite. The syntax is -macrofile=filelocation .

Example: - macrofile=D:\Files\macroFile.txt

3.20 -ignhore

This command line feature act as an overview mode. As the name suggests ZUG ignores all the errors
that occur during the execution of test steps. If a test step of a Test Case or of a Molecule fails ZUG
shows the error message but does not stop the execution and all the test steps of the test cases and that
of the Molecules are executed.

3.21 -atomexectime

This command line feature is used to measure the performance of the atoms that are invoked from the
test suite. After executing each atom ZUG appends the time taken to execute the atom in the end of the
success message of the atom and at the end of the execution ZUG reports the min,avg, max execution
time of the 10 most time consuming atoms in milli seconds. Given below is a sample output format for
this command line switch.

[TCO001] Execution Started Action Zbrowser.GoToURL with values [148283,http://www.google.com]
[TCO001] Action ZBROWSER.GOTOURL SUCCESSFULLY Executed in 3023 milli sec.

Total time taken to execute all the test casez ¢(End to End> is —»> 185266 milli Seconds.

1@ Most time consuming Atom in the Test Suite along with thier execution time in milli seconds

Atom Mame in. Avg.

=zhrowser.gotourl
.brousetopagebyurl
.clickbuttonbyvalue
=hrowser.initialize
zbrowser.clicklinkintablebyrowcolumnandlinkindex
zhrowser.clickimagehytitle
.clickbuttonhytext
zhrowser.gettablecolumnnrhycolumnname
.gettablerownrbycolumnnameandtext 653.88 696
.getrowcountintable 647 .67 672

Automation Finizhed.

ZUG User Manual Page 12/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

4 ZUG Modes

4.1 Production Mode

In production mode the tests are run and result are registered in Zermatt. This is done for unattended
testing.

The following options are primarily used to design in this mode:
-NoRepeat

-AutoRecover
-NoVerbose

-Verify

-Execute
-TestCycleID=[integer]
-TestPlanID=[integer]
-TestPlan=[String:String]
-TopologySetID=[integer |
-TopologySet=[String]
-BuildTag=[String]

=W W - - =W W - - =W W -
~o ~No ~NO ~NO ~o ~No ~NO ~NO ~o ~No ~NO

The above options are discussed in detailed in Chapter 3: . ZUG Options.

4.2 Developer Mode

In this mode Test Automation Developer can debug the automated scripts
The following options are primarily used to design in this mode:

-Verbose

-Debug

The above options are discussed in detailed in Chapter 3: . ZUG Options.

4.3 Performance Mode

This mode is done to stress and measure performance parameters, values and attributes.
The following options are primarily used to design in this mode:

-Repeat

-NoVerify

-Execute

-TestPlanID=[integer]

- =W W - -
~NO ~o ~No ~NO ~NO

-TopologySetID=[integer]|
The above options are discussed in detailed in Chapter 3: . ZUG Options.

ZUG User Manual

Page 13/ 38

Author: Md Sarfaraz Khan

Version: 6.5

Date 20/05/13

Page 14/ 38

ZUG User Manual
Date 20/05/13

Version: 6.5

Author: Md Sarfaraz Khan

5 Process Flow

5.1 Architecture overview

C'\- Zug —‘:
‘A J %

ChurS$preadsheet
Zug Machine

Test Cycles

L/. Zermattﬂ! *
g:t Zug J‘- ’ \ g:{ Zug J" :

H

I

Zug Machine

Chur Spreadshest Chur Spreadsheet

Zug Machine

Terminals

The atoms written in any scripting language are executed in Zug platform with the help of Chur spread
sheet in different Zug machines. After execution the results are stored in the data repository of
Zermatt. The end-users can access the results in Zermatt through the internet at real time.

ZUG User Manual Page 15/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

6 Running your first automated test

In this manual we are using an example for illustration where we open a document using an office
application and close it automatically.

(If you are not using Zermatt, then kindly ignore the following sections
6.1)

6.1 Preparing Zermatt for Zug

W
~No

Once the test plan is created in Zermatt, it can be used to store automated test results. The
testplan_id of the test plan is one of the inputs required by Zug to file the results. The
testplan_id can be found in Zermatt.

-
~NO

The topology sets are also needed to be written in Zermatt for integration with Zug. The
topology sets has to be added to the list of topology sets of the test plan. The topology set
written should have at least one topology. The topologyset id is found in the status bar of List

all Topology Sets for a chosen Test Plan.

-
~NO

We can see the participating topologies of the topology set in the Zermatt page List All
Topology Sets:

17 The role of any one topology as shown in the above figure should match with the role stated in
the Chur spreadsheet that is to be written later.

(For deeper understanding on CHUR, please refer to the Language Reference Manual of Chur)

6.2 Managing Atoms

The atoms in Zug can be written in any scripting or programming language. In this manual we have
created the atoms using AutolT, a freeware BASIC-like scripting language designed for automating
the Windows GUI and general scripting. For web based products, we have our own proprietary
libraries named Zuoz. For more information regarding Zuoz kindly refer to
www.automature.com.

The demo atoms are written in AutolT and stored in a folder inside the Input files folder of the Zug
Kit.

file:///C:/Users/AppData/Local/Temp/www.automature.com

ZUG User Manual Page 16/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

6.3 Preparing Zug for Zermatt

Once the atoms are written, the Chur spread sheet is prepared. For more information on how to write a
Chur file please refer to the Language Reference Manual of Chur.

The figure below shows the configuration page of Chur file for this test.

+=| Demo.xdls - OpenOffice.org Calc.

File Edit View Insert Format Tools Data Window Help

- = B [My | ABG TARE || % = :
;M'E'—ﬁmﬂ@bﬁ Vel 8 B B¢ B~
© &l | calibri]l|l1u [=] B F U

Font Namei = I

A

ScriptLocation C A ZUGNnput Files\Demo_Exes
DBEHostMame localhost

DBMName test

DBUserMame root

DBUserPassword password

Test Suite Name Demo - test suite

Test Suite Role ZUG-Client

L] \Confiq,{Macrosf_U sers { TestCases { Molecules § Prototypes /

| Sheet1/6 || PageStyle Config s [l Sl

The Config page states the environmental information which is used by Zug to locate supporting
programs and uploading results into the database.

¥ ScriptLocation states location of the folder where the Zug atoms are written for this test.

¥ DBHostName states the hostname for the database server. To keep the data repository of

Zermatt in the Zug machine, localhost is given as input. We can provide the exact port
number also for reporting.

3

7 DBName states the database name.

32 DBUserName states the name of the user to do authentication to database.

=W

DBUserPassword states the password of the user required for SQL authentication.

Test Suite Name states the name of the test suite which was stated in Zermatt.

-

5
7
5
7
5
7
5
7
5
7

32 Test Suite Role states the role of the node where Test Suite will be executed.

The figure below shows the macros page of Chur file for this test.

ZUG User Manual Page 17/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

File Edit Yiew Insert Format Tools Data Window Help

B2 B s P Kag-¢ B - @k
- @ | Al o [BZU|[E]= % 3% %

x| /& E = |c\ZuGinput Files\Test.doc

A e
Macro Name Value Comment
SFILEMAME CZUGNnput Files\Test.doc [ame of the file to be used

The macros allow the testcase designer to declare short names that can then be substituted in the
testcase descriptions during execution. In this case, the path of the file Test.doc is given as input.

6.4 Executing the automated test

Time has come to execute the automated test in Zug. While executing, the test cycles will be
incremented in Zermatt automatically. Before executing, the Zermatt page will look as shown in the
figure below.

f ListPPTestPlans < ZERMATT = TWiki - Windows Internet Explorer

@@ - |g, http: {192, 168.5.5 bwikifbinviewZERMATT [ListPPTestPlans?projectphase_id=39 V| || X | Jgle | L bl
File Edit Wiew Favorites Tools Help

Go Slt “ | i’ Search « i jl - E%' Share ~ @ - | Ap Check - &.‘ Translate ~ ‘\ v . Signln ~
- i — — 1 L = =
o o |'_’,éListPPTestPIans < FERMATT = TWiki [| & - + = v |5 Page » 0k Tooks -

— M LCRIATIT

[*

Word Application i > Release Plan (V1.0) [§ » Phase | g > Test Plans |

Hello Debabrata

Das

a Log Out Sprints 3 £3: Phase | —

My links: You may modify planning data on this page J |

- My home page

- My ZERMATT Create A New *Testplan*[¥ &
activities

- WorkFlowRoot

0 EF 1EE 7

Dashboards ;leStl r—' L

QualityDashboard Gl i

ProductDashboard file can

ReleaseDashboard be

TestsuiteDashboard opened

; Topology Set
3 associated with
& mtermet this test plan
35

77 Open the command prompt.

ZUG User Manual Page 18/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

% Type runzug "C:\ZUG\Input Files\Demo.xls" -testplanid=61
-topologysetid=1 -verbose

Command Prompt -) -'_‘.D_Li[
B

C:x2rrunzug "CixZUGNInput FilessDemo.xls" —testplanid=61 —tupulugysetxn1="c:\2-
Input FilessTopologySetBML.xml" —verhose_

-
~NO

The following screens will appear automatically. The automation starts....

Cisrrunzug VCaSEUGSInput FilessDemo.x1ls" —testplanid=61 —topologysetxml=""C:%ZUG
Input Files“TopologySetd¥ML.xml'" —verhose
Automation Started

Controller-Main : Ualidating Command Line Arguments

Controller Main: Command Line Arguments Validated

Current date i= : 208108-11-2

Expiry date iz = 28011-5-1

Automation started for Automature Inc.

Reading the TestCases Input Sheet C:5\ZUGxInput FilessDemo.xls.

SUCCESSFULLY HRead the TestCases Input Sheet C:sZUGNInput FilessDemo.xls
Connecting to the Datahase : framework of Host 192_168.5.5 with User zermattadmi
n

Connection to the Database iz successful.

ZUG User Manual Page 19/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

%2 The atom named STARTAPP.EXE is called to execute.

otal time taken to initialize the Harness is —» 13808 milli Seconds.

Humber of TestCase to Execute is 2w

Start Executing the testcaszes e

TezstCase ID TeztBAl1
2A101182-168326

RBunning Molecule Test@81l_Openlordhpp

Jorking on Test Case Uariable Combination OpenllordApp
f3181132—168326

[TESTAH1_OPENUORDAPF] Action SETCONTEXTUAR Execution STARTED With Arguments AppT
pe =8

[TESTAA1L_OPEMWORDAPP] Action SETCONTEXRTUAR SUCCESSFULLY Executed
20161182-168326

[TESTAA1_OFPENWORDAPP] Action BSTARTAPP.EXRE Execution STARTED With Arguments 'APT
=tord™ “"RETURNWINDOW=AppType™

% The Word Application is opened.

T Microsoft Word

File Edit Wew Insert Format Tools Table Window Help
Total time tal »
33303 B I

<% Number of

=% Start Exer

mosnsaREssERE

[Running TestCi
2010A1192—1603:

llorking on Te:
20181102 1633

[TESTBA1_OPEN!

ype =8
BRLTESTBAL_OPEN!
2 01081182-16A3:

5 [TESTBAL_OPEN!

Si-Yord"” “RETURI
[TESTBA1_OPEN!

[TESTOAL_OPEN!
lguments “"APP=I

[TESTOA1_OPEM!
20181162-1684

ia Start ~ e rﬂ ListPPTest] e+ Command Prompt - ru,.. rﬁqu:-ur:F\IEes

ZUG User Manual Page 20/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

-

The Word file is opened by executing the OPENFILE.EXE.

W
~No ~NO

file Edit View Insert Formst Took Table Window Help

— S
bocx Nunber of TestCase to Execute is Zxsx > A TmesHewRoman - 12 ~ B 1 U

I
bocx Start Executing the testcases ==

[Running TestCase ID Test8@1
20101102-160326

boconaoesooanaaesooss Bunning Molecule Test@@1_OpenWordApp
B

Working on Test Case Uariable Combination OpenWordApp
20191182-168326

[TEST@A1_OPENVORDAPP] Action SETCONTEXTUAR Execution STARTED With Arguments AppT
lype =8

[TESTAA1L_OPENWORDAPP] Action SETCONTEXTUAR SUCCESSFULLY Executed
20101102-160326

[TESTA@1_OPENWORDAFP 1 Action BSTARTAFF.EXRE Execution STARTED With Arguments “APP|
=Word" “RETURNWINDOW=AppType"

[TEST@@1_OPENWORDAFP] Action GSTARTAFP.EXRE SUCCESSFULLY Executed

[TESTA@1_OPENWORDAFP] Uerification BUERIFYSTARTAPP.EXE Execution STARTED With Ar|
guments “"APP=Uopd"

[TEST@@1_OPENWORDAFP] Uerification BUERIFYSTARTAPP.EXE SUCCESSFULLY Executed
20181182-160448

[TEST@A1_OPENWORDAPP] Action BOPENFILE.ERE Execution STARTED With Arguments “FIL|
[E=C:“\Documents and Settings“AdministratorSDesktoph\ZUG Kit“\ZUG\Input Files“test.d|
o'’ “"WINDOW=BxBA246122" “RETURNWINDOW=AppType" “FOLDER="

English (U.5

% After the Word file is opened, the CloseFile and the ExitFile executable files are called which

closes the Word file and then exits from the Word application.

[TEST@A1L_OFENMWORDAFF] Action BCLOSEFILE.EXE Execution STARTED With Arguments "WI
DOW=0x80240122" "“"FILE=C:“Documents and Settings“AdministratorsDesktop“ZUG Kit“Z
GsnInput Filesstest.doc"

[TESTBAL_OPENWORDAPF] Action BCLOSEFILE.ERE SUCCESSFULLY Executed

28181182-168524

[TEST@A1L _OFPENWORDAPF] Action BERITAPP.EXE Execution STARTED With Arguments "APP=
Jord"

% The following screens appear on the command prompt which gives the result of the automated

test.

ZUG User Manual Page 21/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

ommand Prompt

STATUS = PASS FOR TestCase ID Test8B1

Eadad

Storing the TestCGase Rezult to 192.168.5_5“framework Datahbase
Saving Rezult for TestCuycle ID 27 and Test Flan ID 61 of Te=st Plan Demo — test §

Following are the Details of the Topology
Topology ID Role Build Humber

3 [null

8 5 null

? 7 null

18 11 null

38 12 null

Following are the Details of the TestCaszes Result getting added to the 192_168.5
5xframewvork Database.

TestCase ID Status Time Taken<In mili-seconds> Comments

TezstA@1l pass 165735

SUCCESSFULLY SAUED Result for TestCuycle 27 and TestPlan ID 61 of Test Suit Demo
— test Suit

SUCCESSFULLY Stored the TestCasze Result to 192.168.5.5“framework Database

The detailed explanation will be stated in the following section 6.5-6.5 Viewing results in Zermatt.

ZUG User Manual

Page 22/ 38

Author: Md Sarfaraz Khan

Version: 6.5 Date 20/05/13

6.5 Viewing results in Zermatt

3

3% You will see that the test cycle is automatically increased to one. Refer to section Executing

the automated test to see the previous value of test cycle. Now every time you run Zug, the
value increments by itself.

W ZERMATT

Hello Debabrata
Das
a Log Out

My links:

- My home page

- My ZERMATT
activities

- WorkFlowRoot
dit

Dashboards
QualityDashboard
ProductDashboard
ReleaseDashboard

Fonianidaofooki

Word Application | > Release Plan (V1.0) [> Phase | [> Test Plans [

Sprints [£3: Phase |

You may modify planning data on this page

Create A New *Testplan® ¥

.............................. “
a a
Test EE
Plan |

an be

pened

6.6 Interpreting the results

» Results in Command Prompt

The progress of the test-cases are displayed one after another. The specified Action and Verification
Steps inside the test cases are executed and are shown at the same time in the command prompt. If any
step fails then the exception message is displayed explaining the cause of failure.

At the end the brief result are shown in tabular form. The table has columns TestCase ID, status, Time
Taken, Comments.

TestCase ID

The identifier of the test-cases which ran inside test suite

status

Pass/Fail

Time Taken (milli seconds) | Milliseconds taken to execute the test case

Comments

On failing, this states the exception message with the reason of failing

ZUG User Manual Page 23/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

= Command Prompt

STATUE = PAES FOR TestCase ID Test@81

Ear

Ctoring the TestCase Result to 192 _168.5_.5~Framework Database.....
Saving Result for TestCuycle ID 27 and Test Flan ID 61 of Test Plan Demo — test 8
it

Following are the Details of the Topology
Topology ID Role Build Humber

null

null

null

null

null
Following are the Details of the TestCases HResult getting added to the 122_168.5
Seframework Database.
TestCase ID Status Time Taken<In mili—seconds> Comments

TestBBA1l pass 165735

SUCCESSFELLE’ SAVED Result TestCycle 2% and TestPlan ID &1 of Test Suit Demo
— test uit

SUCCESSFULLY Stored the TestCase Result to 192 168 .5 _ 55 framework Database.._.._...

»Results in Log Files

Zug will generate four types of Logs. These logs will be created inside the AppData Folder
(Application Data folder of windows OS) of logged in user.

All the Log File Name will be appended with a Date Time. For example Debug log will be named as
2008128-163637543-Debug.log (format is yyyymmdd-hhmmssmillisecond-debug) which means that
this Debug Log is created on 8th December 2008 at 16 hours 36 minutes (last 5 are seconds and milli-
seconds). Following is the description of the log files -

1."Result.log" - This log will contain the result of the test case, It will contain the status of the
action(s) specified in the TestCase worksheet and also the appropriate error result if any error
thrown during the test case series execution.

2."Debug.log"- This log will contain all the debug related messages.

3."Error.log"- This log will contain the error and warning messages if any error occurred during
the execution.

4."Primitives.log" - This log will contain Logs from the Atoms during atom execution.

Viewing the test results from Zermatt:

To view the results in Zermatt, navigate to the page where the test plans are written. As said earlier, the
test cycle is incremented from O tol.

ZUG User Manual

Page 24/ 38

Author: Md Sarfaraz Khan

Version: 6.5 Date 20/05/13

B ZERMATT

Hello Debabrata
Das
& Log Out

My links:
- My home page
= My ZERMATT

Word Application [> Release Plan (V1.0) [§ > Phase | [§ > Test Plans [

Sprints [(3: Phase | —

You may modify planning data on this page

Create A New *Testplan®[¥

activities
— WorkFlowRoot

edit a)

Testing ifa Active 1 8B 1EEF 1EEF
Dashboards o '|] E 1El E 1B iy
QualityDashboard wart _":
ProductDashboard can be

opened

ReleaseDashboard

= P TR

Click on View and you will be able to see the following page. It states the time and the date of the
initialization and completion of the test cycle.

Word Application [i§ > Release Plan (V1.0) g > Phase | g > Test Plan | [> Test Cycles
Hello Debabrata o
Das

& Log Out

My links: Test Plans 3 E3:

= My home page

— My ZERMATT
activities

— WorkFlowRoot

You may modify test execution data on this page

Test Cycle [

2010-11-02
16:03:21

2010-11-02 13000

16:06:10

Dashboards
QualitvDashhoard

If you navigate into the topology set of that test plan, the test execution results are shown. It stated that
the test has passed and also the duration and the date of the test execution.

Execution Topology Sets [£3: First Topology Set — First Topology Set — First Topology Set &
First Topology Set —

You may modify test execution data on this page

Add New *Manual Test Execution Result[

g @ g |+ |Details a a
a
Testo01 [E [4 Demo- 2010-11-02 Automation pass 185735 E| =l
o test
Suit

If you navigate to the Dashboards, the various kinds of results that might be possible is shown in
various formats. For further information regarding dashboards, kindly refer to Zermatt User Manual.

ZUG User Manual Page 25/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

6.7 Archival the Log files

Zug supports log archiving. If Zermatt integration is used then Zug will archive the log. Zug will
archive two types of logs:

¥ested product (like LMDC Client, Server) log files. Log file specified in Config sheet of Test design
sheet. This is done by specifying ProductLogLocations in the Config sheet of Chur Test Suite.

¥Zug created log files (Debug, Error, Result). These are the log files which are generated by the Zug
during test plan execution.

Log Archival Setup

You can specify Archive Location in the Zermatt Configuration Page:

Zermatt Configuration [j

You may modify configuration data on this page.

Create New Configuration Property [*

ArchiveLocation [4 3 VatticWC\ZUG\LogArchive

6.8 Reporting to TestLink

6.8.1 Basic Terminologies of TestLink

Test Projects are the basic organizational unit of Test Link. Test Projects could be products or
solutions of your company that may change their features and functionality over time but for the most
part remain the same. A Test Project includes Test Specifications with Test Cases, Requirements and
Keywords. Users within the project have defined roles. Test Projects are independent and do not share
data.

Test Case describes a testing task via steps (actions, scenario) and expected results. The Test
Case is the fundamental element of Test Link.

Test Suite organizes Test Cases into units. Each Test Suite consists of a title, a formatted
description, Test Cases and possibly other Test Suites. TestLink uses a tree structure for Test Suites.

Test Plans are the basis for test execution activity. A test plan is created when you wish to
execute Test Cases. A Test Plan contains name, description,collection of chosen Test Cases, Builds and
some optional attributes (Test Results, milestones, tester assignment and priority definition). Each Test
Plan is related to the current Test Project.

ZUG User Manual Page 26/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

6.8.2 Preparing ZUG for TestLink

We need to provide some information in the configuration page of the Chur spread sheet in order to
report the execution results of test cases in Test link.

The figure below shows the configuration page of Chur file for this test.

7| contextvarads - OpenOffice.org Calc = x|
:EM;;E-G‘MEW il“""; é:";m;“;ﬂ:m & B GHYN By H2EEQ @ , i =& 4 g R
{8 [Flo F]B/Uszs=mc hx¥ulae O -2 -4,

o [A E = [‘ |

| * ScriptLocation C:\Program Files\Automature\Zuoz\GeneralPurpose\Ruby

| » DBHostName http://localhost:8098/testlink/lib/api/xmlirpc.php

> TestFramework testlink

 * DBUserName admin

| ° DBUserPassword 1234

¢ Test Suite Name cv

I Test Suite Role ZUG
| ¢ Include

o P (T ey | 0

Sheet1/5 PageStyle_Config STD Sum=0 @——o— 240%

The Config page states the environmental information which is used by Zug to locate supporting
programs and uploading results into the Test Frame Work.
* ScriptLocation states location of the folder where the Zug atoms are written for this test.

* DBHostName states the host name for the Test framework server. Here we have to provide
the the IP address along with the port number in which the server is listening and the rest of
the part is the location of a PHP(xmlrpc.php) file in the Test Link framework.

* TestFramework states the name of the Test Frame Work in which we want to report the
results of the test case execution. Since we want to report in TestLink the value of the field is
testlink.

¢ DBUserName states the name of the user to do authentication to the Test Frame Work. In this
case we are using the admin.

* DBUserPassword states the dev key ,also named as Personal API access key or script key for
the user.

¢ Test Suite Name states the name of the test suite which was stated in Test Link.
* Test Suite Role states the name of the Test Project to which the Test Suite belong.

Note:The dev key,also called Personal API access key can be found in the MySetting link in TestLink.
If the key is not generated then click on the button “Generate a new key”. A key will be generated.
Below is the snapshot of the page.

ZUG User Manual Page 27/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

ftestlink/index.php

= C | [localhost:8098

. ngf TestLink Prague 1.9.5 : admin [admin] [My Settings | Logout]
Liﬁk 'Project | Requirement Specification | Test Specification | Test Execution | Test Reports | User Management | Events | |- | &

[Account Settings

Personal data

Login admin

First Name Testlink J

Last Name |sdministrator |

Email []

Locale | English (wide/UK) :l English is the default development language and is always up to date
[Save |

Personal password

0Old Password l |

New Password | |

Confirm New Password | |

| Change passward |

APl interface

| Personal API access key = 1234

| Generate a new key |

However if the last section of the page (API interface) is not there and there is no button for
generating a new key then follow the subtopic “Enable API interface” in our next topic.

6.8.3 Preparing TestLink For ZUG:

* Create a Test Project and while creating a test project make sure that Enable Test
Automation (API keys) box is checked. If the project is already created then click on the
project and see if the check box is selected or not. If not then select the check option and save

it.

ZUG User Manual

Page 28/ 38

Author: Md Sarfaraz Khan

Version: 6.5

Date 20/05/13

Test
Link

TestLink Prague 1.9.5 : admin [admin] [My Settings | Logout]

Project | Requirement Specification | Test Specification | Test Execution | Test Reports | User Management | Events | = | <&

‘est Project Management : Create a new project

Create from existing Test Project?
Name *
Prefix (used for Test case ID) *

Project description

Enhanced features

Issue Tracker Integration

Availability

| Create || Cancel |

[No ~]

zuc

BEEG&aE B 7 U=
- TE R

|F Fort - | Size

2=

= O

Enable Requirements feature
Enable Testing Priority

Enable Test Automation (4P| keys)

OEOO

Enable Inventory

[Active

Issue Tracl—:erEB

[¥] Active

[#] Public

* Create a new Test Suite in the Test Project.

¢ Once the Test Suite is created we can add test cases in the Test Suite.

* We need to create a Test Plan and a build for that test plan.

* Finally once the Test Plan and the build is created the test cases need to be associated with the
test plans.

Note: For reporting from ZUG in Test Link Test Project and Test Suite only needs to be created before
running the tests. Last 3 steps mentioned above can also be performed by ZUG. However for that the
user whose credentials is mentioned in the chur's configuration sheet must be authorized in test link to
do the mentioned operations. For more information on TestLink read the user manual for test link(

http://www.teamst.org/_tldoc/1.9/testlink_user_manual.pdf).

Enabling the API Interface:
(This section if needed only if the API interface is disable and the user is not bale to generate API key)

By default the API Interface is not enabled in the TestLink. In the TestLink folder there is file
config.inc.php.

http://www.teamst.org/_tldoc/1.9/testlink_user_manual.pdf

ZUG User Manual Page 29/ 38
Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13
Local Disk (C:) » xampp » htdocs » testlink »
iy - Share with - Burn Mew folder

Mame - Date modified Type Size

i cfg 1/20,/2010 11:22 PM File folder

.1 custom 1/20,/2010 11:22 PM File folder

i docs 1/20,/2010 11:22 PM File folder

L ogui 1/20,/2010 11:22 PM File folder

L install 1/20,/2010 11:22 PM File felder

b 1/20,/2010 11:22 PM File felder

L locale 1/20,/2010 11:22 PM File folder

L logs 3/1/,2013 8:14 PM File folder

L third_party 1/20/2010 11:23 PM File folder

. upload_area 3/1/2013 8:27 PM File folder

L | .ewsignore 17202010 11:22 PR CWSIGMORE File 1 KB
L | CHANGELOG 17202010 11:22 PM File 105 KB
L | CODE_REUSE 17202010 11:22 PM File 1 KB
®| config.inc.php 1/20/2010 11:22 PM PHP File 39 KB
,L config_db.inc.php 3172012 8:14 PM PHP File 1 KB
¥ | custom_config.inc.php 3/4/2012 11:54 AM PHP File & KB
® | custom_config.inc.php.example 1/20,2010 11:22 PM EXAMPLE File G KB
®| firstLogin.php 1/20/2010 11:22 PM PHP File 2 KB
%] index.php 1/20/2010 11:22 PM PHP File 2 KB
L_] license 1/20/2010 11:22 PM File 18 KB
®| login.php 1/,20,2010 11:22 PM PHP File 4 KB
%] logout.php 1/20,2010 11:22 PM PHP File 1KEB
2| lostPassword.php 1/,20,2010 11:23 PM PHP File 2 KB
L_| readme 1/20,2010 11:22 PM File 8 KB
| SCHEMA_CHAMGES 1/20/2010 11:22 PM File 2 KB
|®| sysinfo.php 1/20,2010 11:22 PM PHP File 7 KB

Open this file with any text editor and search for the line :

StlCfg->api->enabled .If $tlCfg->api->enabled

1.. config.inc.php

FALSE;

VP |

287
288
| 289
290 /7

291

292 S+ Taken
293
294
295
298 /7
297
298

=
I

EclCfg—»va
StlCfg->»va

= by

i

then set it to true by replacing the line with :

StlCfg->api->enabled

TRUE;

T

_:'5
n_cfg->user email walid regex js
n_cfg->user email wvalid regex php

VIivpes.Js

-

298 4+ NMT,-RPC APT availability {disabled bv default)
300 StlCfg-—>api->enabled = EALSE;'

301

302 s/ used to display API ID inf in the *View pages
303 $tlcfg—>api—>id_farmat =""m[ID: %3 |7

304

it il 5 0

rrjl."nl:[‘\.

ZUG User Manual Page 30/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

1.. config.inc.php l

L"f:@ e A s e 1
ﬁ!] 2893 5tlCfg-»validation cfg->user email walid regex js = "/"([Zw]l+) (. [
. = 294 $tlCfg->validation cfg->user email valid regex php = "/" ([\w]+) (.
s 295
== 296 e
| S 297
2 New projec g

t"] Folder | 299 ' ' :
300 £tlCfg-rapi-»enabled = TRUE:;

303 Et'_fjfg—bapi—}id_fnrrr.at =-"mIrih: %= 1™

Now save the file and upload the folder to the server and start the server(If the server was already
running then it should be stopped first and then needs to be restarted after the changes have been
made).

6.8.4 Executing the automated tests

* Open a command prompt.

* Type runzug “file path\filename.xls” -verbose -testplanname= mytestplanname

-buildname=mybuildname . For example

B C:\Windows\system32\cmd.exe = ﬂ@

E:\)runzug "CislUsershskhan\Desktop\6.B\TestSuites\contextvar.xls" —verhose —testplanname=IP1 -buildname=B-20130328-14

futomation Started

[Warning] ZugINI.xml contains hlank inprocess package definition. Please refer to the readme.txt or Zug User Manual

If the test plan name doesn't exists then it creates one with the mentioned test plan name
and also creates a build with the mentioned build name. The build name is optional if we
don't give a build name it will create a new build with a new system generated build
name.

* The following lines will appear automatically. The automation starts....

ER C:\Windows\systemn32\cmd.exe || @

E:s>runzug “'GisUserssskhansDesktopiU6 . B\TestSuitesscontextvar.xls" —verhbose —testplanname=TPF1l -huildname=B-28138328-14
A
Automation Started

[Warning]l ZugIMI.xml contains hlank inprocess package definition. Pleasze prefer to the peadme.txt or Zug User Manual

Command Line Arguments Validated

Current date is = 2813-3-28

Expiry date iz : 2814-1-1

Zug is Ualid Automature LLG. This Generic License is issued to Automature and Manimitra for usage of Zug.
Reading the TestCases Input Sheet C:“Userssskhan“\DesktopsV6.B\TestBuites\contextvar.xls.

SUCCESSFULLY Read the TestCaszes Input Sheet C:\Userssskhan\Dezktop™U6.@\TestSuites\contextvar.xls

Connecting to Test Linkhttp://localhost:8898-testlink/lib api/xmlrpc.php
Connection to testlink is successful.

TeztLinkReporter:Build name was not provided or the build name doesn’t existz System has created a new build:
28-14A

P S SR S S R B S SR B B B S R S R S E SR S HE R S H SR R SR S

Total time taken to initialize the Harness is -> 13764 milli Seconds.

ZUG User Manual Page 31/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

* Once the execution is finished we can go to the Execute Test cases link in the Test Link and
select the test plan name and the build name that we mentioned in the command prompt in the
runzug command.

| fasf TestLink Prague 1.9.5 : admin [admin] [My Settings | Logout]
Liﬂk E_ij_ect |__Re_|:_|_u1'rement sg_ecification | Test S_pecificatinn __|_ Test Execution |__ Test R_eg_mrtj __| User Management \ Events |E UG- |4

i 1 s b 1m0 140 Test plan |-

|Purpose:
[TP1 4 -]
. | Allows user to execute Test cases. User can assign Test result to Test Case fo
Update tree after every ocperation 7] | Get started:
Esportiest Slo) 1. User must have defined a Build for the Test Plan.
Z. Select a Build from the drop down box
Filters - 3. If you want to see only a few testcases instead of the whole tree
4. Click on a test case in the tree menu.
iestease D lus- | 5. Fill out the test case result and any applicable notes or bugs.
Test Case Title [| 6. Save results.
Iestoulte | |Note: TestLink must be configured to collaborate with your Bug tracker if you

Priority | [Any] : I
Execution type | [Any]
Assigned to |:B[Anﬂ

include unassigned Test Cases

Result [Any] : |

LI | Build chasen for executiunlzl

|Apply IReset Filters| |Advanced Filters|

Expand tree| [Collapse treg|

4] ZUG/TP1 (84)(53, 11, 0, 0}
4 &5 contextvar (21}(10, 11, 0, 0)
> [CJCV (11)(0, 11, 0, @)
] ZUG-6:CV006
ZUG-T:CVOOT
ZUG-10:Cv001

=] ZUG-1:TC001

= s mmnmnn

* Once we choose the test plan and the build we'll be able to see the executed test cases as
shown in the above pic. To see the execution result of a test case click just click on it as shown
below.

Test Testlink Prague 1.9.5 : admin [admin] [My Settings | Logout]
“ﬂk | Project | Requirement Specification | Test Specification | Test Execution | Test Reports | User Management | Events | E] 4 Test Proj

[t s ay]

v |Test plan notes
Filters = ~ Build description

Test Case ID &
Test Case Title |

[Print | Show only last execution | [Import XL Results || Execute and Save Resuts |

Test Suite [: ¥ | Test Suite: Cv/
Priority A - i
1Amy] W Test Case 1D 22 =2 Version : 1

Bectiontpe [yl <) Vo2

[18ny) - No tester assigned

Assigned to
Include unassigned Test Cases Execution history - Build : My ZUG-B-171422013
Result [[+ Date T Frtins Test Case Version attachments
on [Build chosen for execution :
[14/03/2013 13:00:21 admin 1 (-]
Hotes

|4pply| Reset Filters| [sdvanced Filters| e Ci5iaeE

Completion Time:Thu Mar 14 17:30:20 IST 2013

[Expand tre¢] Collapse treg]

m

4 I My ZUG 1 TP1 (6TH(2, 63, 2, 0}
4590V (25)2, 22,1, 0)
> (Cmvev (12)(0, 12, 0, 0)

Summary
Testing = sign in Append to Context var (secand Combinatian)

Preconditions

Execution type : Automated

ZUG User Manual Page 32/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

7. Implicit Molecule Calls

Often we would like to run some operations or some verification that are implicit in nature. For
example sensing the environment on which the tests are being run or checking after each test case that
the application that is being tested is reachable or running. For this purpose there are some molecule
names that have been reserved. When a molecule is defined in the test suite with the reserved molecule
name that molecule is called implicitly by ZUG.

7.1 ZCase_Verify

If a molecule of this name exists in the Molecule sheet then that molecule is implicitly invoked after
the execution of each Test Case. We don't have to call this molecule explicitly ZUG Implicitly calls

this molecule after running each of the Test Case. However this Molecule is not invoked for the Init
and CleanUp test case.

7.2 ZStep_\Verify

If a molecule of this name exists in the Molecule sheet then that molecule is implicitly invoked after
the execution of each test step. The test step can be of a Molecule or that of a Test Case. ZUG
Implicitly calls this molecule after running each of the test step. However this Molecule is not invoked
for the test step of Init and CleanUp test case and also for the test steps of ZCase Verify molecule.

7.3 ZEnv_Sensor

A molecule is defined with this name to sense the environment in which the tests are being run. This
molecule is invoked implicitly after running the Init test case or after running the first test case of the
test suite.

TestCase D Description property Step Action ActionArg_1 ActionArg_2 ActionArg_3 Verify

Init SetContextvar envValues

70001 Istring.compare %envValues% %ZEnv_Values%

cleanup UnSetContextvar envValues

Description Property Step Action ActionArg_1 ActionArg_2
zenv_sensor appendtoContextvar envValues %ZEnv_Values%
print inside molecule

In the above pic we can see there is a test case and a molecule Zenv_Sensor. Also we have used a
context variable ZEnv_Values .This context variable is defined by ZUG to store some environment
related information. Initially it holds some values like OS Name=Windows 7,Java Version=1.6,User
Name=Ellora ,etc as a comma separated list. We can further add some more details in the
ZEnv_Values context variable in this molecule which may be needed. For example the name and the
version of the browser that will be used for the browser operations.

ZUG User Manual Page 33/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

esx Start Executing the testcases e

[S I I R I S R S S R S R R S R S R R R S R

[Running TestCase ID Init On{Current Dated: 2013:85:13-16:46:38

[INIT] Action SETCONTEXTUAR Execution STARTED With Arguments envlalues

[INIT]1 Action SETCONTEXTUAR SUCCESSFULLY Executed

STATUS : PASS FOR TestCase ID Init On{Current Date>: 2813:85:13-16:46:38

S S R S H I B S S R S R S R E S R H S R S R S R R R R R R R

eserescse st Running Molecule Init_Cenu_Senoorr Seseseesessm s se s s o s s 3 m o0 2 2

[INIT_ZENMU_SENSOR] Action APPENDTOCONTEXTUAR Execution STARTED With Arguments contextvar = enuvlalues valueTofAppend = 0
% Mame=Windows 7.Java version=1.7.LOGON SERUER=““~ELLORA.COMPUTER MAME= ELLORH USER HAME=skhan,APPDATA=C:“Users:skhan“Ap
pData“Roaming.USERDOMAIN=ELLORA . PROCESSOR_ARCHITECTURE= x86 NUMBER OF_PROCESSORS =2 .RAM=3999 MB

L[INIT_ZENU_SENSOR] Action APPENDTOCONTEXTUAR SUCCESSFULLY Executed
[INIT_ZENU_SENSOR] Executed Action print with values [inside moleculel

Molecule Init_zenv_sensor Execution Finished

[S I I R I S R S S R S R R S R S R R R S R

Running TestCase ID TCBA1 On{Current Dated: 2013:85:13-16:46:39

[TCAA1 1 Execution Started Action Zstring.compare with values [0S Name=Windows 7?.Java version=1.7,LOGON SERUVER=~“ELLORA
-COMPUTER MAME=ELLORA.USER WAME=skhan.APPDATA=C:“\Userssskhan~AppPata*Roaming.USERDOMAIN=ELLORA . PROCESSOR _ARCHITECTURE=|
<86 .NUMBER_OF_PROCESSORS =2 . RAM=3999 MB. 05 Mame=Windows 7.Java version=1.7.LOGON SERVER=\\ELLORA,COMPUTER NAME=ELLORA.
ggEg ggnE;;ggaaﬁqPPDﬂTﬂ=C:\UsePs\skhan\ﬂppData\Roaming,USERDOHRIN=ELL0RR,PROCESSOR_RRCHITECTURE=x86.NUHBER_OF_PROCESSO

[TCBA1 1 Action ZSTRING.COMPARE SUCCESSFULLY Executed

STATUS : PASS FOR TestCase ID TCBB1 On{Current Dated>: 2013:@5:13-16:46:39

[S I I R I S R S S R S R R S R S R R R S R

[Bunning TestCase ID TCHBZ On(Current Dated: 2813:B5:13-16:46:48

[TCAA2]1 Execution Started Action Zstring.compare with values [0S Name=Windows 7?.Java version=1.7,LOGON SERUVER=~“ELLORA
-COMPUTER MAME=ELLORA.USER WAME=skhan,APPDATA=C:“\Userssskhan~AppDPatasRoaming.USERDOMAIN=ELLORA . PROCESSOR_ARCHITECTURE=|
<86 .NUMBER_OF_PROCESSORS =2 .RAM=3999 MB. 05 Mame=Windows 7.Java version=1.7.LOGON SERVER=\\ELLORA,COMPUTER NAME=ELLORA.
ggEg ggnE;;ggaaﬁqPPDﬂTﬂ=C:\UsePs\skhan\ﬂppData\Roaming,USERDOHRIN=ELL0RR,PROCESSOR_RRCHITECTURE=x86.NUHBER_OF_PROCESSO

[TCBA2]1 Action ZSTRING.COMPARE SUCCESSFULLY Executed

STATUS : PASS FOR TestCase ID TCAB2 On{Current Dated: 2013:B5:13-16:46:40

e e R e e R R e P R S RS
[S I I R I S R S S R S R R S R S R R R S R

[Running TestCase ID cleanup On{Current Datel: 2813:85:13-16:46:48
[CLEANUP] Action UMSETCONTERTUAR Executed With NO Arguments

ISTATUS : PASS FOR TestCase ID cleanup On{Current Dated: 20813:A5:13-16:46:41

Following are the Details of the TestCases Result Executed by ZUG Uersion —> ZUG Premium 6.2.20138587.148

TestCase ID Status Time Taken<In milli-seconds> Comments

pass

pass

Total time taken to execute all the test cases (End to End) is —> 5954 milli Seconds.

Above is the console output of the test case. We can see that in the console output that the
Zenv_Sensor molecule have been implicitly invoked in the end of the Init test case.

ZUG User Manual Page 34/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

8. Troubleshooting

8.1 Debug Log

Zug generates different log file. Debug file stores messages which contain extensive contextual
information. They are mostly used for problem diagnosis. In failures this file can be referred back to
diagnose and investigate problems, exception. The step-by-step execution messages are appended
during Zug automation. The file can be browsed through and

8.2 Primitive log

Zug executes Atoms. To learn how to write Atom please refer to Automature's Zuoz Programmer's
Guide. Inside Atoms some logging command mechanism can be used to help future diagnosis of Atom
execution. The Atom Logs are stored in Primitive Log File. In failures this file can be referred back to
diagnose and correct Atoms

8.3 Database connection problem

In order to integrate test results with Zermatt there should be establishment of proper database
connection. You can allow access to certain machines for the specified user connection. Do database
user administration to add and modify users permission. Put proper connection details in preparing
Zug for Zermatt. Refer Page 16 6.3 Preparing Zug for Zermatt

B8 Command Prompt - runZUG.Bat "Input Files\Demeo - Copy.xls” -testplanid=1 -topologysetid=1 -v... l = ras X
C:5EUGrrunZUG.Bat "Input Files“Demo — Copy.xls" —testplanid=1 —topologysetid=1 -
verhoze

Automation Started

Controller~Main : WValidating Command Line Arguments

Controller~Main: Command Line Arguments Validated

Current date is : 2018-11-8

Expiry date is @ 2811-5-1

Automation started for Automature Inc.

Reading the TestCases Input Sheet Input FilessDemo — Copy.xls.

SUCCESSFULLY Read the TestCases Input Sheet Input Files»Demo — Copy._xls
Connecting to the Database - test of Host 192.168.5.5 with Uszer zermattadmin
Connection to the Database is successful.

org.hibernate.exceptiol . JDBCConnectionException: Cannot open connection

at Dl‘g.]’]ihel‘l’late SEACEDL U -uuuul.tll.l:uullul:rl.l:r.l..ullvl:rl.\ulguul.tll.l:ul]ﬂUBl‘tBl‘.j
avaz72>

at org.hibernate .exception.JDBCExceptionHe lper. . convert (JDBCExceptionHelp
epr.javaz43n

at org.hibernate.exception.JDBCExceptionHe lper.convert (JDBCExceptionHelp
er.javaz29y

at org.hibernate.jdbc.ConnectionManager.openConnection{ConnectionManager
JJavaz3iz2vy

org.hibernate. jdbe.ConnectionManager.getConnection{ConnectionManager.

org.hibernate.jdbc . JDBCContext.connection(JDBCContext. javaz127>
org.hibernate.transaction.JDBCTransaction.begin¢{JDBCTransaction.java:

org.hibernate.impl.SessionImpl.beginTransaction<SessionImpl. java:1387

ZUG User Manual Page 35/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

8.4 Unable to Archive Log Files

Archiving of Log files are done on location specified in Configuration (Refer page 25 6.7 Archival the
Log files) Zug machine should be given proper write-permission for the location specified. An
exception can occur as following:

Command Prompt - ﬂﬂ
=

CUCCESSFULLY Stored the TestCase Result to 192.168.5.5“framework Database....

Total time taken to execute all the test cases (End to End> is —» 168313 mill
econds .

UtilityscopyFile(>:Unable to copy file. Error message iz = ““Automature—Seru’,
kup~61+98~Demo — test Suitx~1%201601188-202042%Zug~2010811688-201744-Debuyg. log <.
n failure: account currently disahled>

Exception occured while archiving log on “sHutomature—berusbBackupsbli?ssUemo
est Suits1%20181188-282042: ““Automature-—ServsBackups61s985Demo — test Suitsd
1811688202042\ Zug~2018011688-281744-Debug.log {Logon failure: account currently
=abled>

Cleanup starting... Closing Log

Exiting ZUG

Automation Finished.

R ﬂ

4 4

8.5 License Expired

License can expire under the two following cases

1.You are using an expired license. Each license has a certain validity period and it expires on a
particular date as mentioned.

2.You are using an improper license. The license may be incorrect or intended for other use.

ontrollersMain : Ualidating Command Line Arguments

ontrollersMain: Command Line Arguments Ualidated

urrent date iz = 2818-11-1

xpiry date is 2018111
ontrollersMain: The License of ZUG hasz expired. Please renew.
Uizit www.automature .com

Automation Finished.

ZUG User Manual Page 36/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

8.6 JRE Dependency

If the JRE is updated from java 1.6 to java 1.7 after installing ZUG then ZUG will stop working and it
will give an error message similar to the message given below

BER C:h\Windows\systermn32\cmd.exe |l @

E:“testsuites mytestsuites >runzuy —verhose ExecutionCycleTestSuite.xls —testcaseid=EWF@A1@
Automation Started

Registry key ’SoftwaresJavaSoftsJava Runtime Environment™CurrentlUersion’
has value '1.7', but '1.6° is required.
Error: could not find java.dll

could not find Java 3E Runtime Environment.

Automation Finished.

E-“testsuites‘mytestsuites

Solution: Reinstalling ZUG will fix the problem

ZUG User Manual Page 37/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

9 ZugINI.xml

9.1 Inprocess atoms configuration

Zug3.0 version can call the external java jar files as built-in atoms through chur spreadsheet. To make
this happen the ZugINI.xml parsing is needed. Inside the Zug installation directory, the ZugINI.xml
file can be edited to by putting the values in the tags of

<inprocesspackages>
<inprocesspackage name="" language=""">
<file-path></file-path>
<jar-package></jar-package>
<class-name></class-name>
</inprocesspackage>
</inprocesspackages>
This xml file (ZugINI.xml) is in ZUG installation folder.

For any Java inprocess atoms, the inprocesspackage tag contains file-path,jar-package and class-name
tags.

Example:
<inprocesspackages>
<inprocesspackage name="Zbrowser" language="Java’>
<file-path>C:\Programfiles\Automature\ZUOZ\Builtins</file-path>
<jar-package>com.automature.zuoz.builtins.zbrowser</jar-package>
<class-name>BrowserOperations</class-name>
</inprocesspackage>
</inprocesspackages>
For any C++ dll atoms the same inprocesspackage tag will contain different tag values example -

the language tag will be changed to “JNI”. The file-path tag will specifies the dll. The dll-name tag
specifies the name of DLL file.

Example:
<inprocesspackages>
<inprocesspackage name="JNIDLL" language="JNI">
<file-path>C:\Programfiles\Automature\ZUOZ\Builtins</file-path>
<dll-name>TestDLL</dll-name>
</inprocesspackage>

</inprocesspackages>

For any COM dll atoms the Program ID is needed.

ZUG User Manual Page 38/ 38

Author: Md Sarfaraz Khan Version: 6.5 Date 20/05/13

For the same inprocesspackage tag, language attribute value will be “COM” and there will be one
additional tag as prog-id.

Example:
<inprocesspackages>
<inprocesspackage name="ZCOM" language="COM”>
<prog-id>Automature.Pioneer</prog-id>
</inprocesspackage>

</inprocesspackages>

9.2 DB Configuration and Script Locations

In the config sheet of the test suite we have to mention the script location and also some information
of the Test Management Framework (credentials,host name,etc) for reporting the execution result of
the test cases. However Test suites running on the same machine may report to the same Test
Management Framework with a default data base credentials and also we may want to have a default
repository for the out process atoms. Thus we can mention default script locations and default
configuration for the Test Management Framework in ZugINI.xml file. In the ZugINI.xml file inside
the configurations we can mention the default script locations under the script location tag and the
Test Management Framework information in their respective tags as shown below

<configurations>
<scriptlocation>C:\ProgramFiles;C:\ProgramFiles (x86)</scriptlocation>
<dbhostname>http://localHost:4567</dbhostname>
<dbname>Framework</dbname>
<dbusername>davosuser</dbusername>

<dbuserpassword>user</dbuserpassword>

</configurations>

For further problems visit ZUG Forum.

http://www.automature.com/redmine/projects/zplugint/boards/show/3

	1.1 Document Purpose 5
	1.2 Intended Audience 5
	2.1 Test Suite 6
	2.2 Test Case 6
	2.3 Atom 6
	2.4 Molecule 6
	2.5 Action 6
	2.6 Test Plan 6
	2.7 Test Step 6
	2.8 Verification Step 7
	2.9 MVM Configuration 7
	3.1 -TestCaseID=Test001,... 8
	3.2 -Repeat | -NoRepeat 8
	3.3 -Autorecover | -NoAutorecover 8
	3.4 -Verbose | NoVerbose 8
	3.5 -Debug | NoDebug 9
	3.6 -Verify | -NoVerify 9
	3.7 -AtomPath=<location> 9
	3.8 -Include=<location> 9
	3.9 -Execute | -NoExecute 9
	3.10 -$<macroname>=<value> 9
	3.11 -TestCycleID=<integer> 10
	3.12 -TestPlan=<Product:Release:Sprint:TestPlan> 10
	3.13 -TestPlanID=<integer> 10
	3.14 -TopologySetID=<integer> 10
	3.15 -TopologySet=<AlphaNumeric> 10
	3.16 -BuildTag=<AlphaNumeric> 10
	3.17 -LogFileName=<AlphaNumeric> 10
	3.18 -macrocolumn=<file identifier:column value> 11
	3.19 -macrofile=<file location> 11
	3.20 -ignore 11
	3.21 -atomexectime 11
	4.1 Production Mode 12
	4.2 Developer Mode 12
	4.3 Performance Mode 12
	5.1 Architecture overview 14
	6.1 Preparing Zermatt for Zug 15
	6.2 Managing Atoms 15
	6.3 Preparing Zug for Zermatt 16
	6.4 Executing the automated test 17
	6.5 Viewing results in Zermatt 22
	6.6 Interpreting the results 22
	6.7 Archival the Log files 25
	6.8 Reporting to TestLink 25
	6.8.1 Basic Terminologies of TestLink 25
	6.8.2 Preparing ZUG for TestLink 26
	6.8.3 Preparing TestLink For ZUG: 27
	6.8.4 Executing the automated tests 30

	7.1 ZCase_Verify 32
	7.2 ZStep_Verify 32
	7.3 ZEnv_Sensor 32
	8.1 Debug Log 34
	8.2 Primitive log 34
	8.3 Database connection problem 34
	8.4 Unable to Archive Log Files 35
	8.5 License Expired 35
	9.1 Inprocess atoms configuration 37
	9.2 DB Configuration and Script Locations 38
	1 . Introduction
	1.1 Document Purpose
	1.2 Intended Audience

	2 . Concepts and Terminologies
	2.1 Test Suite
	2.2 Test Case
	2.3 Atom
	2.4 Molecule
	2.5 Action
	2.6 Test Plan
	2.7 Test Step
	2.8 Verification Step
	2.9 MVM Configuration

	3 . ZUG Options
	3.1 -TestCaseID=Test001,...
	3.2 -Repeat | -NoRepeat
	3.3 -Autorecover | -NoAutorecover
	3.4 -Verbose | NoVerbose
	3.5 -Debug | NoDebug
	3.6 -Verify | -NoVerify
	3.7 -AtomPath=<location>
	3.8 -Include=<location>
	3.9 -Execute | -NoExecute
	3.10 -$<macroname>=<value>
	3.11 -TestCycleID=<integer>
	3.12 -TestPlan=<Product:Release:Sprint:TestPlan>
	3.13 -TestPlanID=<integer>
	3.14 -TopologySetID=<integer>
	3.15 -TopologySet=<AlphaNumeric>
	3.16 -BuildTag=<AlphaNumeric>
	3.17 -LogFileName=<AlphaNumeric>
	3.18 -macrocolumn=<file identifier:column value>
	3.19 -macrofile=<file location>
	3.20 -ignore
	3.21 -atomexectime

	4 ZUG Modes
	4.1 Production Mode
	4.2 Developer Mode
	4.3 Performance Mode

	5 Process Flow
	5.1 Architecture overview

	6 Running your first automated test
	6.1 Preparing Zermatt for Zug
	6.2 Managing Atoms
	6.3 Preparing Zug for Zermatt
	6.4 Executing the automated test
	6.5 Viewing results in Zermatt
	6.6 Interpreting the results
	6.7 Archival the Log files
	6.8 Reporting to TestLink
	6.8.1 Basic Terminologies of TestLink
	6.8.2 Preparing ZUG for TestLink
	6.8.3 Preparing TestLink For ZUG:
	6.8.4 Executing the automated tests

	7 . Implicit Molecule Calls
	7.1 ZCase_Verify
	7.2 ZStep_Verify
	7.3 ZEnv_Sensor

	8. Troubleshooting
	8.1 Debug Log
	8.2 Primitive log
	8.3 Database connection problem
	8.4 Unable to Archive Log Files
	8.5 License Expired

	9 ZugINI.xml
	9.1 Inprocess atoms configuration
	9.2 DB Configuration and Script Locations

