
Chur User Manual Page 1/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Chur Language Reference Manual

Whilst all reasonable care has been taken to ensure that the details are true
and not misleading at the time of publication, no liability whatsoever is
assumed by Automature LLC, or any supplier of Automature LLC, with
respect to the accuracy or any use of the information provided herein.

Any license, delivery and support of software require entering into separate
agreements with Automature LLC.

This document may contain confidential information and may not be
modified or reproduced, in whole or in part, or transmitted in any form to
any third party, without the written approval from Automature LLC.

Copyright © 2012 Automature LLC

All rights reserved.

Chur User Manual Page 2/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Revision History

Version Date Name Description of Changes

1 09/11/10 Nitish Rawat First Edition

2 30/08/11 Sankha Sil Revision

3 16/09/11 Sankha Sil Revision

4 04/11/11 Sankha Sil Revision

5 13/02/12 Sankha Sil Revision

6 15/02/12 Debabrata Das Second Edition

7 23/03/12 Dipu Deshmukh Review

8 23/04/12 Sankha Sil Revision (Named Argument description updated, test results
reporting updated)

9 16/05/12 Sankha Sil Revision (Arranging and adding new features of ZUG)

10 19/06/12 Sankha Sil Review

11 07/03/12 Dipayan Sengupta Revision (Added examples for NameSpaces)

12 14/08/12 Sankha Sil Built-in Atoms added

13 25/10/12 Dipayan Sengupta Added a new Chapter for MVCV

14 13/11/12 Sankha Sil Revision(Correcting Indexed MVM examples)

15 21/11/12 Sankha Sil Added new feature: Built In Atom enhanced.

16 21/01/13 Md Sarfaraz Khan Added a new topic,command line options

17 04/03/13 Md Sarfaraz Khan Added two new topic 1)Using external Frameworks as atom
libraries 2)Misc- Ignore test step feature

18 05/05/13 Md Sarfaraz Khan Added new feature:ROS and ROF

Chur User Manual Page 3/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Table of Contents

1. Introduction..6

1.1 Document Purpose..6

1.2 Intended Audience...6

2. Anatomy of an Automation Test Suite...7

2.3 TestCases and Molecules Worksheets...9

2.4 Prototypes..13

3. Writing a simple Test Case..14

3.3 Flow of Execution...14

3.4 Command line execution...15

4. Built-in Atoms..16

4.1 Context Variable Atoms..16

4.2 XML Parsing Atoms...18

4.3 Web Automation Atoms..18

4.4 Print Atom..18

4.5 GetValueAtIndex Atom...18

4.6 GetCurrentIndex Atom..18

4.7 GetValueAt Atom..19

5. Exception Handling..20

5.1 Test case or Molecule exception handling...20

5.2 Test suite exception handling...21

6. Context variables..22

6.1 Definition..22

6.2 Declaring a Context variable...22

6.3 Pass arguments by value or by reference...22

6.4 Reading and Altering Context variable value from atoms (ZUG API)......22

6.5 Zuoz pearls...23

Chur User Manual Page 4/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

6.6 Appending values to a Context variable..23

6.7 Destroying a Context variable...23

6.8 ZUG test environment variables..24

7. Molecules...26

7.1 Definition..26

7.2 Designing a Molecule..26

7.3 Positional and named arguments..27

8. Multi-valued Macros..30

8.1 Definition..30

8.2 Cartesian MVM expansion...30

8.3 Indexed MVM expansion...30

8.4 Nested MVMs..31

8.5 MVM used in Test-cases..31

8.6 MVM used in Molecules...32

8.7 Scalar and Vector MVMs..32

8.8 Indexing Macro values in a molecule without Indexed MVM...................33

9. Multi Valued Context Variable...34

9.1 Definition..34

9.2 Cartesian Expansion...34

9.3 MVCV used in Test-cases..35

9.4 MVCV used in Molecules..35

9.5 Scalar and Vector MVCVs..36

10. Concurrent Execution..37

10.1 Test case or Molecule concurrency...37

10.2 Test step concurrency...37

10.3 Thread safe context variables...37

10.4 Passing thread safe context variables as arguments...........................37

11. Negative Testing...38

Chur User Manual Page 5/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

11.1 Definition..38

11.2 How To Use...38

12.NameSpaces..40

12.1 Calling a Molecule from a single external worksheet............................40

12.2 Calling external macros from an external worksheet............................41

12.3 Calling two different macros from different external worksheets.........41

12.4 Multi Level Include Files...42

13. Command Line Options...43

13.1 -verbose...43

13.2 -include...43

13.3 -macrocolumn...43

14. ZUG Logs..45

14.1 Result Log...45

14.2 Debug Log...45

14.3 Error Log...45

14.4 Primitive Log..45

15.Using External Frameworks as Atom Libraries.....................................46

16.Miscellaneous...49

16.1 Ignore test Step feature...49

16.2 ROS (Return on Success)..50

16.3 ROF (Return on Failure)..51

17. Reporting test results ..53

18. Glossary...54

Chur User Manual Page 6/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

1. Introduction

CHUR is Automature's formal test specification language. CHUR needs ZUG to execute tests, so
please refer to the ZUG manual to find out how to run tests written in CHUR.

CHUR is platform independent. It can execute tests wherever ZUG is supported.

CHUR uses a spreadsheet paradigm to specify test steps. The choice is intentional. Most test
engineers aleady use spreadsheets to document testcases. CHUR is simply a more formal way to
describe such tests, so that they can be executed automatically.

CHUR is simple in structure, but extremely powerful as a test specification language. With semantic
support for concurrent execution, threadsafe context variables, macros, include files, testcase
generation, explicit differentiation between test steps and verification steps, and other features, it is
not just yet another general purpose programming language. Instead, it is specifically designed to
make the design and maintainability of test cases easier.

1.1 Document Purpose
This Programmer’s Guide guides the user through the steps to create a testsuite in CHUR, containing
one or more test-cases. This document describes the various features of the language, and provides
examples of how they are intended to be used.

1.2 Intended Audience
This user manual is intended for users who want to learn designing test cases using CHUR. It may
also be used by quality analysts, test automation engineers, QA managers, QA architects to
understand the basic concepts behind Automature's unique solution to Automation.

Though no formal programming background is essential to understand CHUR, some prior basic
knowledge of programming concepts, spreadsheets and software testing, would be helpful.

Chur User Manual Page 7/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

2. Anatomy of an Automation Test Suite

Automation Test Suite is represented in spreadsheet and it consists of following worksheets:

Config, Macros, TestCases, Molecules and Prototypes

2.1 Config Worksheet
This section is where environmental information is described. This information is typically used by ZUG to locate
supporting programs, and upload results into the Automature database.

It also contains the configuration for mapping where the Atoms are installed and also if any other spreadsheets
need to be included or not.

Chur User Manual Page 8/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Following is a brief description of the Config Sheet properties –

Property Name Property Significance Values Optional?

ScriptLocation Here the location of the atoms are
specified. ZUG will pick the
atoms to execute from the
location specified. Multiple
location may be provided using ‘;’
after each qualified path.
The locations can be a fully
qualified path name, or a path
relative to the current directory.

e.g. E:\ZUG\Scripts\ is a valid fully
qualified path for ScriptLocation whereas
"Scripts\Atoms" is a relative path and it
will find the folder either from the current
location or the location of the testsuite as
per the ZUG invocation. For Multipile
Atom Locations e.g
C:\Zuoz\Atoms\Java;C:\Zuoz\Atoms\Ruby

If no
external
atoms are
userd then
this field
can be kept
blank.

DBHostName Host name of the Database server HostMachine :port<localhost:4567> No

DBName Database Name Framework (not mandatory for davos) No

DBUserName Name of the User to do
Authentication to DB

e.g. davosuser No

DBUserPassword Password of the user required for
SQL Authentication

e.g. user No

Test Suite Name Name of the Test Suite e.g. ZERMATT Automation No

Test Suite Role Role of the node where Test Suite
will be executed

e.g. client , server , etc...). No

ProductLogLocati
ons

List of folders (Fully qualified paths)
of logs for products under test like
ZUG Client, Zermatt server

This should be a comma separated list of
paths

Optional

INCLUDE Allows a reference to another
spreadsheet file, which contains
Molecules and macros to be
included. ZUG allows more than
one such declaration and nested
include files.

e.g. C:\FileOps.xls
e.g for multipile includes
C:\MoleculeFile.xls,C:\MacroFile.xls

Optional

2.2 Macros Worksheet
This section allows the test case designer to declare short names called Macros that can then be substituted in
the test case specification during execution. This information is integral to the logic of the decomposed test steps,
and does not relate to the execution environment.

There are three columns on the Macros worksheet:

Column Name Significance Values Optional?

Macro Name The first column is for the Macro
Name.

A Macro name must start with a single
dollar ($) . A Macro name can contain
letters, numbers or underscores (_).

No

Value The second column contains the
value assigned to the Macro.

Any string, e.g. HostMachine
:port<default 3306>

No

Comment The third column is for comments. Any related information to the Macro,
something that describes the Macro or its
purpose or any comment can be written
here. This column is ignored by the
engine and therefore, isn't mandatory.

Yes

Chur User Manual Page 9/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

A sample Macro worksheet:

2.3 TestCases and Molecules Worksheets

The Test Case and the Molecules worksheets are divided into two logical sections, viz.

1. Header Section - The first set of rows in each sheet.

The following is the header section for a test case sheet:

2. One or more of the following two sections
1. The comment section - this section will appear as a preamble to a testcase, and is a verbose

description of the testcase
2. The testcase section, which lays out the details about steps, actions and verifications about an

individual testcase. This section is divided into three logical column groups, viz.

1. The identification group of columns

2. The test step group of columns, and

3. The result verification group of columns

The identification group of columns

 These columns identify the test case.

1. The first column contains the testcase or the Molecule identifier. This must uniquely identify each test
case. This identification is used to locate the row in the test framework database, where results will be
stored.

2. The second column should contain a summary description of the testcase.

Chur User Manual Page 10/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

The test step group of columns

These columns describe the steps involved in executing the test. A test is expected to consist of one or more
actions. Actions may be performed in sequence or in parallel. The step identifier allows the designer to designate
several steps to be executed in parallel. Each action step allows the specification of input arguments.

The sequence identifier also allows the designer to declare certain steps to be initialization or cleanup steps. By
appropriately pairing the sequence identifiers for these steps, the designer can tell ZUG which cleanup steps
need to be executed, in case the test fails at any given point.

The result verification group of columns

These columns describe how to verify the outcome of a specific action. Each method can be supplied arguments.
The verification method always returns a status. If the status returned is a zero, then the verification is deemed
to have succeeded. If all actions for a given test case are successful, then the testcase has passed.

The following table describes the meaning of indiviudal columns in the testcases & Molecules worksheet.

Column
Name

Column Description Acceptable Values Optional?

TestCase
ID* or

*Molecule
Name

Unique identifier or name for a
test case, or Molecule. The cell
should be left blank if the action
on the corresponding row is a part
of the same test case or Molecule
declared earlier. Init and Cleanup
are reserved names interpreted
by the ZUG in a special way

Init : This is the initialization
Molecule for the entire test plan.
If a testcase is named Init, ZUG
will execute this testcase before
any test case is executed from
the test case worksheet. If all
action steps for Init succeeds,
ZUG will proceed with other test
cases. The result of init is not
stored in the database. If this

Mandatory, if the row
corresponds to the first
step of a test case,
Molecule, initialization or
cleanup. Otherwise, should
be left blank

http://www.automature.com/twiki/bin/view/ZUG/TestCaseDesign?skin=clean.nat%2Cbloom11;sortcol=3;table=1;up=0#sorted_table
http://www.automature.com/twiki/bin/view/ZUG/TestCaseDesign?skin=clean.nat%2Cbloom11;sortcol=2;table=1;up=0#sorted_table
http://www.automature.com/twiki/bin/view/ZUG/TestCaseDesign?skin=clean.nat%2Cbloom11;sortcol=1;table=1;up=0#sorted_table
http://www.automature.com/twiki/bin/view/ZUG/TestCaseDesign?skin=clean.nat%2Cbloom11;sortcol=0;table=1;up=0#sorted_table
http://www.automature.com/twiki/bin/view/ZUG/TestCaseDesign?skin=clean.nat%2Cbloom11;sortcol=0;table=1;up=0#sorted_table

Chur User Manual Page 11/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

fails then ZUG looks for a
testcase named cleanup
Cleanup : This is the clean up
for the entire test suite. The
cleanup testcase is executed at
the end after all the test cases
have been executed. Like the
Init testcase, the result for the
cleanup Molecule is also not
stored in the database.

Description Textual Description of the Step. Currently ignored by the ZUG, it is
a good practice for the Test Case
Writer to document the intent of the
step within the Test Case or
Molecule.

Optional, but highly
recommended

property This column is used to tell the
ZUG how to execute the action or
the testcase. The property can be
a testcase or Molecule property,
or it can be a test step property.
Multiple properties can be
specified as a pipe separated list

1. Auto or Manual : (test
case or Molecule
property) . Means that
the test case or
Molecule will be
executed by the ZUG.

2. GCE or Seq: (Test case
or Molecule property) :
GCE stands for
"Generate concurrently
executing testcases" -
This means All the
expanded test cases
(using MVM) will be
executed concurrently
(i.e. in parallel) instead
of sequentially.

3.
REM/Comment or Exec;
(test step property) To
prevent a specific step
(Action/Verification
step) from execution.

4. Negative,neg-
action,neg-verify for
negative testing.

Default properties:

Auto | Seq | Exec

Step: This should be specified for each
Action of a Test Case or a
Molecule (but) not for a
Verification step. It should be a
monotonically increasing number
for each test case action. If
multiple steps of a test case have
the same number, then those
steps are executed concurrently.

Some steps can be considered
to be initialization steps, a few
others the actual action steps,
and the rest cleanup steps. The

"2i" and "5c" are examples of a
valid initialization step and a valid
cleanup step

Optional, unless two steps
are supposed to be
executed in parallel, or are
used to pair an initialization
step with a cleanup step
within a test case or
Molecule.

The default behavior, when
steps are not numbered
are that the steps are
exceuted sequentially.

http://www.automature.com/twiki/bin/view/ZUG/GenerateConcurrencyExecution
http://www.automature.com/twiki/bin/view/ZUG/GenerateConcurrencyExecution

Chur User Manual Page 12/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

initialization steps should be
postfixed by an "i" and the
cleanup steps should be postfixed
with a "c". This allows ZUG to
handle exceptions properly,
without the necessity to have a
semantic understanding of the
actions.

Only those cleanup steps
of a testcase or Molecule
will be executed, whose
initialization steps have
been completed or started.

Action A Test Case is a sequence of one
or more Actions. And each Action
may take as many arguments as
necessary.

"@" : prefixes the name of a
atom. ZUG executes the Action
by executing the atom in a
separate command shell
window. The atom must return a
status value indicating success
or failure. A zero return indicates
success. An non-zero return will
cause the testcase or Molecule
to abort, and initiate cleanup
actions.
"&" prefixes the name of a
Molecule. ZUG supports the
notion of Nested Molecules -
wherein a Molecule or a normal
testcase can refer to a series of
Molecules, which can then
invoke any number of other
Molecules. Note that recursive
Molecule calls are not
supported.
Built-in atoms (no prefix) - These
are atoms that execute in the
same process context as ZUG.
These atoms are internal to the
ZUG For a complete list of built-
in atoms, see Built-in Atoms .

In-Process atoms (no prefix) –
Atoms may also be added by
users to execute in-process. The
name of the library must
precede the name name of the
atom.

ActionArg_

All Action Arguments should
have "ActionArg_#" as a
caption for the column header,
where # should be an integer,
starting from 1 and be
incremental. For example to
have 3 arguments for the
Action one can have 3 columns
with the column caption
reading "ActionArg_1",
"ActionArg_2", "ActionArg_3".
The contents may be an actual
value, a macro, that would be
substituted at "compile" time,
or a context variable, that
would be substituted at
"execution" time. Refer to
Macro description to learn
about macros. Action
arguments also support

The contents may be an input
argument, referred to by its
position, or its formal name, or
an actual value, a context
variable, or a macro that would
be substituted at execution time.

Context variables may be
passed by reference or by value.
If a context variable is
referenced enclosed within a
pair of '%' around it, the variable
is passed as by value, otherwise
ZUG just passes the context
variable by reference and the
atom, or Molecule is responsible
for reading or setting the value
of that context variable
Pass By Value :
Example: @openbrowser URL=

Optional

Chur User Manual Page 13/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

passing of named formal
arguments e.g.
Formal_arg1=Actual_arg1.
Actual_arg1 may be an actual
value, a context variable or a
macro. While passing an
argument from a test case to a
molecule, only the value is
passed (and not the formal
name). However, if the action
happens to be an atom, (action
name prefixed by @, the
arguments are passed as a
formal name=actual value
pair.). Formal Arguments
increase the maintainability of
the testsuite.

%myurl%

Pass By Reference :
Example: @getwindowhandle
WHandle=WINDOW_HANDLE

Verify Each Action of a Test Case may
consist of none, one, or several
Verification Methods. And each
Verification method may take
several arguments as needed.

Any verification method that starts
with a "@" will be considered a
atom. ZUG will execute the
Verification Method by running the
atom in its own command shell
window. A Verification Method may
also invoke a Molecule.

Note that verification methods may
also be implemented as in-process
atoms. In that case, the name of
the atom must be prefixed with the
package name, in which the atom
is implemented. In process atoms
should not be invoked using the
:@” prefix.

Optional

VerifyArg_# All Verification Arguments
should have VerifyArg_# as the
column caption, where # must
be a number (integer). This
number must be incremental.
For example to have 3
arguments for the Verification
Method, one must have 3
columns with the column
captions VerifyArg_1,
VerifyArg_2, VerifyArg_3
respectively.

The contents may be an input
argument, referred to by its
position, or its formal name, or an
actual value, a context variable, or
a macro that would be substituted
at execution time.

2.4 Prototypes
This is the place where one specifies the footprint (i.e. the number and names of formal arguments of invokable
entities) for atoms and molecules. This allows ZUG to perform syntax verification.

Specifying prototypes for molecules or atoms is optional. It is generally good practice to do so, because ZUG can
automatically do compatibility checks between different versions of molecules, perhaps packaged inside include
files.

Chur User Manual Page 14/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

3. Writing a simple Test Case

3.1 Introduction
To write test cases, you should copy the template spreadsheet file (Testsuite_template.xls) from the templates
folder of your ZUG installation directory. Test cases are written in the TestCases worksheet of the spreadsheet
and the spreadsheet with all its test cases is called a test suite.

The TestCases worksheet of the spreadsheet has a number of columns. For ZUG to execute a test case, the
first row in the TestCase ID and the Action columns cannot be empty. Test cases are separated by the green
rows, which contain a description of the intent of the test cases, and each test case must contain at least one
row.

The above test case shows how to create a file and also verifies whether the file is created or not.

3.2 Action/Verification steps and their arguments
A test case in CHUR consists of one or more Action steps and their corresponding verification steps.
To write an automated test case you need to write action steps in the Action column and verification steps in the
Verify column.

These action steps can be references to Atoms or Molecules. We shall use only Atoms for the Action and Verify
steps in this section.

• An Atom is a user-written program or a CHUR built-in or user-extended function, that implements a very
specific task e.g. open an application, click a button, save a file, navigate to a webpage, etc.

Atoms accept arguments just like any other program or function. Arguments can be plain text, Context Variables
or Macros. Macros that contain some value and are defined in the Macros worksheet.

• A Macro is a name given to a constant string value (text). Macros are defined in the Macros worksheet
and the values are replaced at runtime in the TestCases and Molecules worksheet of the spreadsheet
wherever the corresponding Macro names are used.

3.3 Flow of Execution

ZUG starts to execute test cases on the Testcases worksheet of the spreadsheet in the order they are defined.

ZUG executes the Atom in the Action column of the test case by passing the argument list to the Atom and
launching the Atom using the interpreter defined in the ZugINI.xml file and then it executes the Atom in the Verify
column by passing the argument list, if any, to it.

The default flow of execution of a test case is sequential, i.e. row by row. That is, first the Action step is executed
and then its verification step, if any, is executed, which is in the same row1 of the Testcases worksheet. Once
both the Action and Verify step are executed of the first row of the test case, the control jumps to the second row

1 Note that one action may have more than one verification step. Though it may increase readability if the
steps were packaged as a molecule, and invoked as a single step, CHUR allows multiple verification steps to
be specified inline, on consecutive rows, under the Verify column.

Chur User Manual Page 15/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

of the test case, if any, and starts to execute the Action and Verify steps and so on.

3.4 Command line execution

In order to execute your testsuite from command line you should type the following on the console:

C:\>runzug C:\Testsuites\Template.xls -verbose

runzug is the command to launch ZUG from command line, the second argument is the path to your testsuite file
and the third argument -verbose tells ZUG to show the detailed output of the executiion of the test suite.

Chur User Manual Page 16/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

4. Built-in Atoms

There are some atoms which are internally included in ZUG and can be used just like other Atoms in CHUR test
suite. These atoms are often referred to as built-in atoms. To invoke built-in atoms refer to them without the
usual “@” prefix.

Built-in atoms execute in the same process context as the engine that drives the test cases. Therefore they are
significantly less expensive to invoke, than out-of-process atoms.

CHUR also supports user-written atoms that are executed in the same process as the engine. Currently, only
atoms written in Java, can be invoked as in-process atoms. To invoke these atoms, the name must be prefixed
with the name of the package in which they are contained.

4.1 Context Variable Atoms
These built-in atoms implement the Context Variable features available in CHUR. See the section below for the
argument list for these atoms

Name of Atom Description

SetContextVar Declare and set the context variable value for given name.

UnSetContext
Var

Delete the context variable value for given name.

AppendToCont
extVar

It will append value of key=value pair to given context variable value.

4.1.1 SetContextVar

Paramete
r Name

Purpose Typ
e

Valid
Value

s

Directi
on

Option
al?

Default
Value

name=value name represents Context variable name
and value represent the Context variable
value to be set. If context variable
already exist then its value will be update
to new value.

Scala
r

any
string

Input Required none

4.1.2 UnSetContextVar

Parameter
Name

Purpose Type Valid
Values

Directi
on

Option
al?

Default
Value

name string represents Context variable
name to be delete if exist.

Scala
r

any string Input Required none

http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=6;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=6;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=5;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=5;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=4;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=4;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=3;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=3;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=2;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=1;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=0;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=0;table=6;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=6;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=6;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=5;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=5;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=4;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=4;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=3;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=3;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=3;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=2;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=2;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=1;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=0;table=5;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=0;table=5;up=0#sorted_table

Chur User Manual Page 17/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

4.1.3 AppendToContextVar

Paramet
er Name

Purpose Type Valid
Value

s

Direct
ion

Optiona
l?

Defaul
t

Value

contextvar Context variable name to which value to be
append. It should be valid context variable
name.

Scalar context
variable
name.

Input Required None

key Value to be append to context variable
value. It should be in key=value pair.
Minimum one "key=value" pair should be
their. Their can be multiple "key=value"
pair if user wants different value to be
append. Each pair will be different
ActionArg or VerifyArg. For ex. Action will
be "AppendToContextVar" and its Action
arguments will be contextvar=path, Text=\,
FileName=abc, Dot=., FileExtension=txt
respectively. Then contextvar "path" value
will be modified to C:\abc.txt where "C:" is
original value for contextvar "path".

Scalar key=val
ue pair

or
key1=v
alue1,ke
y2=valu
e2 etc.

Input Required None

The following example show how to set a context variable, append values to the context variable and also unset
the same.

or

http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=6;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=6;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=6;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=5;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=5;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=4;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=4;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=3;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=3;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=3;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=2;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=1;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=0;table=8;up=0#sorted_table
http://attic/twiki/bin/view/DEV-ZUOZ/BuiltInAtomsCatalog?skin=clean.nat%2Cautomature;sortcol=0;table=8;up=0#sorted_table

Chur User Manual Page 18/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

The following example show how to set a context variable, append values to the context variable and also unset
the same. Here is the output of the above testcase.

4.2 XML Parsing Atoms
These in-process atoms are part of the ZUOZ atom library, and can be used to automate testing of Web
Applications. The atoms must be prefixed with Zxml. since they are dynamically loaded as a package at
runtime . Please refer to the ZUOZ Reference Guide for documentation on these and other atoms.

 For further reference visit ZUG Forum.

4.3 Web Automation Atoms
These in-process atoms are part of the ZUOZ atom library, and can be used to automate testing of Web
Applications. The atoms must be prefixed with Zbrowser. since they are dynamically loaded as a package at
runtime . Please refer to the ZUOZ Reference Guide for documentation on these and other atoms.

 For further reference visit ZUG Forum.

4.4 Print Atom
This atom just shows the values passed to it on console. It basically can be used for debugging.

4.5 GetValueAtIndex Atom
This atom returns the value of the MVM or MVCV passed as scalar at the specific index.

GetValueAtIndex($MVM/%MVCV%,INDEX,ContextVariable)

4.6 GetCurrentIndex Atom
This atom returns the current index, starting at , of the iterator being used for the specifed MVM or MVCV passed
as scalar value.

http://www.automature.com/redmine/projects/zplugint/boards/show/3
http://www.automature.com/redmine/projects/zplugint/boards/show/3

Chur User Manual Page 19/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

GetCurrentIndex($MVM/%MVCV%,INDEX,ContextVariable)

4.7 GetValueAt Atom
This atom returns the value of target MVM or MVCV at the position corresponding to the SourceValue in the
source MVM or MVCV as scalar value.

GetValueAt($TargetMVM/%TargetMVCV,$SourceMVM/%SourceMVCV,SourceValue,ContextVariable)

Chur User Manual Page 20/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

5. Exception Handling

5.1 Test case or Molecule exception handling

An exception is an event, which occurs during the execution of a program, that disrupts the default sequential
flow of the program's instructions. When an error occurs within a method, the method creates an object and
hands it off to the runtime system. The object, called an exception object, contains information about the error,
including its type and the state of the program when the error occurred. Creating an exception object and
handing it to the runtime system is called throwing an exception.

In CHUR, the idea is similar, but it works slightly differently. The idea is that certain steps are designated to be
cleanup actions for other actions. An example of a cleanup action for opening a file, would be closing the open
file. Cleanup is a good idea to restore the state of the system, so that subsequent tests can execute from a clean
state, and not be affected by previous errors.

In CHUR, cleanup actions are matched with their corresponding “initialization” actions using a step index. Thus,
initialization and cleanup steps are designated in pairs, both having the same step index. Initialization step
indexes increase monotonically, while cleanup step indexes decrease monotonically, thus forming nested pairs of
initialization and cleanup steps.

The step column is used to designate specific actions to be either an initialization action or cleanup actions. To
identify the pair, numbers are used. For a given pair, the initialization action is a numeral, postfixed by an "i" and
the cleanup action is a numeral, postfixed with a "c". So, whenever an initialization step fails the corresponding
cleanup action (bearing the same index) is executed.

For example, If any Atom fails in a test step which is designated with “3i” in the step column on the TestCases or
Molecules worksheet of the spreadsheet, then execution will jump to the corresponding clean up step which is
designated “3c ”. The scope of the initialization and cleanup pairs is within a single test case, or a single
molecule.

Note that, after an exception, execution resumes at the cleanup step corresponding to the last executed
initialization step. The subsequent steps may, or may not be cleanup steps (corresponding to initialization steps
executed earlier).

In steps 1i, 2i and 3i, we are creating three different files and also verifying their creations respectively.
Now if any steps between 1i and 2i fails, it directly jumps to 1c which deletes the first file. It simply skips the steps
in between.
Similarly if any steps between 2i and 3i fails, it jumps to 2c and executes the remaining steps.

Chur User Manual Page 21/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

5.2 Test suite exception handling
Similar to the above section, where the issue of exception handling inside a test case or a molecule was
discussed, CHUR provides the ability to initialize the testsuite, prior to executing any testcase, as well as cleanup
the environment after all testcases have been executed. The purpose of the cleanup is to ensure that the
machine is left in a stable and consistent state, where other testsuites can be executed properly.

For this purpose, CHUR uses two special keywords as reserved names for test cases.

A test case can be defined as an initialization test case by naming the test case as Init. This ensures that the test
case is executed before any other the test cases defined in that test suite. This can be helpful if you need to
create some resources, or load a database table with test data at the beginning of the execution of other test
cases so that they can use the resources or data without having to create them.

Similarly, a test case can be defined as a cleanup test case by naming the test case as Cleanup. This ensures
that the test case is executed at the end, even if all other test cases have failed. This can be helpful to cleanup all
the resources created during the execution of the test suite.

Even though these are called test cases, and are syntactically identical to normal test cases, their outcomes are
not reported. Also, unlike a failure in a normal test case, a failure in the Init test case will prevent any of the other
test cases from being executed, and only the cleanup test case will be executed.

Chur User Manual Page 22/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

6. Context variables

6.1 Definition

Context variables are named containers that can be read and written to at run time. They are used to hold and
pass information between atoms and molecules. The scope of a context variable is global (visible to all test
cases) - must be declared inside the test suite.

6.2 Declaring a Context variable

To declare a context variable you need to use the SetContextVar atom in the Action column. SetContextVar is a
built-in Atom that creates a context variable by the name that is passed to it as the first argument.

A value can be assigned to a context variable at the time of declaration. To do that the first argument can be
replaced key-value pair

Context variables are accessible throughout the test suite and hence, if another context variable is declared with
the same name, its value will be overwritten.

Context variables are different from Macros as the values of the Macros cannot be changed at runtime, by atoms
of any sort. However, a context variable's value can be read or altered by atoms, or molecules.

6.3 Pass arguments by value or by reference

Once a context variable has been declared it can be passed to any atom or molecule as an argument. There are
two reasons why you would like to pass context variables to an atom or a molecule as arguments. Either you
want to send some information to the atom/molecule, or you want to receive some information from the
atom/molecule.

When you need to send some information that is stored in a context variable, you should pass the context
variable by value. The syntax to do that is to enclose the name of the context variable inside two % symbols, e.g.
%BROWSER%, where the value of BROWSER could be SAFARI, and you want to send the content, i.e.
SAFARI.

When you need to receive some information from the Atom, you should pass the context variable by reference.
The syntax to do that, is to use the name of the context variable without any '%' signs enclosing it. e.g.
PAGE_CONTENT, so the atom can return the contents of the page inside the PAGE_CONTENT context
variable.

6.4 Reading and Altering Context variable value from atoms
(ZUG API)

The context variables that are declared on the CHUR speadsheet can be accessed by Atoms using methods
inside the ZugAPI library installed at the time of ZUG installation.

For example, to send the value of a context variable, as an argument, it should be referenced as
%contextvariable%, ZUG retrieves the value of the context variable and then sends it to the Atom. So, when
you pass the value of the context variable, the Atom or Molecule does not know about the actual name of the
context variable used.

In contrast, if the context variable is passed by reference, then the Atom must use the ZugAPI methods to read

Chur User Manual Page 23/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

the value of the context variable or write some value into the context variable.

ZugAPI has two methods to read from and write to a context variable:

GetContextVar is used to read the value of a context variable and AlterContextVar is used to write some value
into the context variable. Here are some example of how you can access the ZugAPI methods in different
languages:

Windows Platform

Ruby/Watir

ZugCOMObj = WIN32OLE.new("Automature.ZugAPI")
ZugCOMObj.AlterContextVar(ARGV[1], "MyValue")

AutoIT

$ZugCOMObj = ObjCreate("Automature.ZugAPI")
$MyValue = $ZugCOMObj.GetContextVar($NameOfContextVar)

JScript

var ZugCOMObj = new ActiveXObject("Automature.ZugAPI");
ZugCOMObj.AlterContextVar(WScript.Arguments.Item(0),"MyValue");

VB Script

Set ZugCOMObj = CreateObject("Automature.ZugAPI")
ZugCOMObj.AlterContextVar WScript.Arguments.Item(0), "MyValue"

Batch script

You can invoke functions to read or write to a context variable from from the
command line using the ZUGUtility2.

6.5 Zuoz pearls

Automature provides a collection of pre-built Atoms that can automate testing of a web application, fetch
performance metrics, invoke web-services, etc. For more information on how to get this library, please contact
support@automature.com

6.6 Appending values to a Context variable

The value stored inside a context variable is plain text and you can append more text/value to the context
variable. The built-in function AppendToContextVar can be used to append values to an existing context variable.

6.7 Destroying a Context variable

To destroy (Unset) a context variable you should use the built-in function UnsetContextVar.

2 The ZugUtility provides a command line interface to invoke methods inside the ZugAPI

Chur User Manual Page 24/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

6.8 ZUG test environment variables

ZUG defines and maintains some global context variables. These variables may be used by the test case
designer for developing test cases.

Nr Name Purpose Comments

1 ZUG_TPSTARTTIME Timestamp when Test
Suite execution
started.

Value set by ZUG when the test suite execution
is started

2 ZUG_TCSTARTTIME Timestamp when Test
Case execution
started

Its value updated by ZUG when each new test
case execution started

3 ZUG_TSSTARTTIME Timestamp when Test
Step execution
started

Variable value updated by ZUG when new test
step execution started

4 ZUG_TESTSUITEID Test Suite Name

5 ZUG_BASETCID Base Test Case ID

6 ZUG_TCID Generated Test Case
ID

7 ZUG_TCYCID Test Cycle ID

8 ZUG_TCYCLENAME Test Cycle Name The name created by ZUG if no previous Test Cycle ID
provided.

9 ZUG_TSEXDID Test Execution Detail
Id

Value is automatically generated by the Reporting
Database for every test case execution

10 ZUG_TESTPLANID Test Plan ID

11 ZUG_TOPOSET Topology SET ID Topology Set ID

12 ZUG_TOPO Topology ID Comma Separated list of Topology ID's
participating in the Automation for testing.

13 ZUG_TESTSUITE_TI
MEOUT

Test Suite Timeout This will contain the maximum time in seconds
for which a test suite can execute. By default its
value will be 2*60*60 seconds. One can use this
context variable to change the default behavior
of timeout dynamically during the test suite
execution.

14 ZUG_TESTSTEP_TIM
EOUT

Test Step Timeout This will contain the maximum time in seconds
for which a test step can execute. By default its
value will be 30*60 seconds. One can use this
context variable to change the default behavior
of timeout dynamically during test suite execution.

15 ZUG_EXCEPTION Test Step Exceptions If negative property is set to any Test Step then it will set
this Context Variable with The error message of that Test
Step and the Test will pass.

16 ZUG_ACTION_EXCE
PTION

Test Step(Action)
Exceptions

If neg-action property is set to any Test Step then it will set
this Context Variable with the error message of that action
test step

17 ZUG_VERIFY_EXCEP
TION

Test Step(Verify)
Exceptions

If neg-verify property is set to any Test Step then it will set
this Context Variable with the error message of that verify
test step

Example:

Chur User Manual Page 25/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

In the following example we show how to automate search between two destinations on a given date for a travel
sit.

The macros sheet:

The Test case sheet:

The two highlighted rows shows the declaration and destruction of a Context variable.

Chur User Manual Page 26/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

7. Molecules

7.1 Definition

A Molecule is a collection of several test steps describing either a complete test case, or some part thereof. It is
referenced by its name and can be invoked by a test case, or another Molecule (known as a complex Molecule).

It accepts input arguments, and can also pass data back to the caller. It can invoke another Molecule, an
external, or a "built-in" atom.

A molecule behaves similar to a procedure, in generic programming languages, in that, it is not expected to
return anything to the caller. When a molecule fails executing an atom, its execution sequence is interrupted, and
the returned to the caller.

7.2 Designing a Molecule

Molecules are designed to promote reuse of the logic of a test case. For example, the test case shown below
consists of Atoms and is written on the TestCases worksheet of the spreadsheet.

A test case is implemented in a way that the logic cannot be used by other test cases. However, if we design a
Molecule with a similar logic then it can be used by different test cases with an entirely different set of data, or
purpose.

A Molecule is syntactically very similar to a test case. The only difference between the definition of a Molecule
and a test case is that it has a Molecule ID whereas a test case has a TestCase ID. That is why TestCases
worksheet and Molecules Worksheet are exactly similar except the first column that is TestCase ID or Molecule
ID. Molecules also increase the readability of the Testcases worksheet.

The Molecules that are defined in the Molecule worksheet can be called by the test cases defined in the
TestCases worksheet. Molecules that are defined in the Molecules worksheet can also call other Molecules
defined there.

The same above test case could be written as follows:

Here a Molecule Travel is defined in the Actions column along with its respective arguments.
The Molecule Travel simply does the same operations as the test case TC001 shown before.

Chur User Manual Page 27/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

7.3 Positional and named arguments

When a Molecule is called by a test case or another Molecule, there are two different ways of passing the
arguments: namely, positional argument passing and named argument passing.

Positional argument passing is the simpler way of passing arguments to a Molecule where you just specify a
text value, the name of a Macro or a context variable. The Molecule can access these arguments by their
positional index in the argument list.

The first row of the Molecule body must contain #define_arg as its Action step and the name of the formal
arguments of the Molecule in the Action argument columns, prefixed with a #.If there are two arguments passed
to a molecule, then in the molecule sheet equal number of arguments must also be defined and in

Example-

1.When the argument is a context variable that has been passed in by reference and value

In the above example #name is passed in as reference and %#name% is passed in as value.
Hence #name=Name and %#name%=John Smith

Chur User Manual Page 28/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

2.Using positional argument passing,where the argument has been passed in by reference and value in a
SetContextVar,

In the above example we set a context variable NameRef=#name (passed in as reference).
Hence NameRef contains the value Name.
We also set the context variable Nameval=%#name% (passed in as value)
Hence Nameval contains the value John Smith.

3.Using an argument in a AppendToContextVar, where the named arg has been passed in as reference and
value and also returns a value.

Chur User Manual Page 29/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Named argument passing is more descriptive than positional argument passing as the arguments are passed
as key-value pairs and hence it increases the readability and maintainability of the test case and the Molecule.

When using named argument passing, an additional row must be added in the Molecule body. The first row of
the Molecule body must contain #define_arg as its Action step and the name of the formal arguments of the
Molecule in the Action argument columns, prefixed with a #. The formal argument names should be used as the
key in the key-value pair, when invoking the Molecule using named argument passing mechanism, as mentioned
above.

When names arguments are used to invoke a Molecule, the order of arguments is not significant.

Example:
1.When the named argument is a context variable that has been passed in by reference and value

The molecule mol_pos is same as mol_positional stated above in testcase P001ARG

2.Using a named argument in a SetContextVar, where the named arg has been passed in by as reference and
value

The molecule mol_pos2 is same as mol_pos2 stated above in testcase P002ARG

3.Using a named argument in a AppendToContextVar, where the named arg has been passed in as reference
and value and also returns a value.

The molecule mol_pos3 is same as mol_pos2 stated above in testcase P003ARG

Please Note - Zug cannot pass a macro having key=value to a molecule using positional arguments.

Example: In the following testcase we have a macro $key_value_macro having values abc=123

Here is the molecule sheet:

The above output does not print abc=123. Rather it prints #key_val.
To pass this macro to a molecule, Named Argument passing is needed.

Chur User Manual Page 30/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

8. Multi-valued Macros

8.1 Definition

Multi-valued macros (MVM) contain lists of values, e.g. $FileTypes={DOC,DOCX,PPT,XLS}, or
$ITERATOR={1..10}

Multi-valued Macros are often represented by a pair of $ symbols, i.e. $$. Use of the $$ is significant only while
the MVM is being referenced inside a Testcase, or a Molecule. It is not significant during declaration in the
MACROS worksheet.

Lists may consist of discrete values, or sequences of values.

$ITERATOR={1..4} is equivalent to writing $ITERATOR={1, 2, 3, 4}

Multi-valued macros in CHUR offer a powerful iteration mechanism, and is a core concept. Whenever MVMs are
encountered inside a testcase or a molecule, that testcase or molecule is executed multiple times, once for each
value of the MVM.

8.2 Cartesian MVM expansion

Cartesian MVM expansion can be useful when all the combinations of all the MVMs present in a test case or
Molecule, need to be exercised. If more than one MVM is used in a test case then a cartesian product over the
set of values of all the MVMs is calculated. e.g. If there are two MVMs:

$FILE_NAME={File1.txt, File2.rtf}
$LOCATION={C:\TempFolder, \\Network\SharedFolder}

and a testcase references both these MVMs as $$ FILE_NAME, and $$LOCATION, then four test cases will be
generated, one for each of the following values of these MVMs.

1. [File1.txt, C:\TempFolder],

2. [File2.rtf, C:\TempFolder],

3. [File1.txt, \\Network\SharedFolder],

4. [File2.txt, \\Network\SharedFolder]

In the above example we can search all the combinations of Source to Destinations.

8.3 Indexed MVM expansion

Indexed MVM expansion can be useful when you need only the combinations of corresponding element index of
another MVM. The only condition is that all the MVMs specified as an indexed MVM must have an equal number
of elements. e.g. If there are two MVMs

$FILE_NAME={File1.txt, File2.rtf} and $LOCATION={C:\TempFolder, \\Network\SharedFolder}

then an indexed MVM is defined as another MVM containing the names of the above MVM, viz.

$FILE_NAME_LOCATION={$$FILE_NAME, $$LOCATION}

file:///C:/Users/TempFolder
file:///C:/Users/TempFolder

Chur User Manual Page 31/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Note that the third MVM, i.e. $FILE_NAME_LOCATION, contains the names of the other two MVMs. This is how
indexed MVMs are declared. The syntax to expand an indexed MVM is to reference the MVM which contains the
names of the other MVMs to be expanded as an indexed MVM, and append the name of the MVM prefixed by a
hash (#).

e.g. $$FILE_NAME_LOCATION#FILE_NAME and $$FILE_NAME_LOCATION#LOCATION will expand into two
value combinations, viz.

1. [File1.txt, C:\TempFolder],

2. [File2.txt, \\Network\SharedFolder]

In the above example we show indexed MVM works.
We define two macros
$Source_Cities={Washington,Detroit}
$Dest_Cities={London,Liverpool}
$Indexed={$$Source_Cities,$$Dest_Cities}

The macros are called in the test case as Origin=$$Indexed#Source_Cities and
Dest=$$Indexed#Dest_Cities

The resulting search will be
i)from Washington to London and
ii)from Detroit to Liverpool.

If any Macro definition is defined as $$, e.g $$Source_Cities={London,Detroit} then Zug will show a error
message
in console as
 Error occured while getting the values from Macro Sheet Macros
Exception Message is Excel/GetKeyValuePair : Error occured while getting
values from the macros Sheet.

 Message Excel/ExpandMacrosValue: Exception raised is ..: Indexed Macros
could not be found in Macro Table.: .

By changing the macro deifinition to $Source_Cities in macro worksheet of the test suite file, This error can be
removed.

8.4 Nested MVMs

Not yet available.

This refers to the syntax, where the value of an element in an MVM list, is itself another MVM.

8.5 MVM used in Test-cases

When used inside the TestCases worksheet of the spreadsheet, is interpreted to auto-generate unique testcases
using a new combination of values from each of the MVMs used in the testcase. Test case identifiers are
automatically generated by ZUG, by concatenating the base id with the combination values. The auto-generated

Chur User Manual Page 32/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

testcases are executed sequentially, unless otherwise specified.3

8.6 MVM used in Molecules

When used inside the Molecules worksheet of the spreadsheet, invokes the Molecule multiple times
sequentially4, each time with a new combination of values (all executing within the context of the parent test
case).

MVM used in Molecules using Named Arguments

If you are using named arguments to replace the macros in the molecules, then to use Cartesian MVM the
named arguments are referenced as ##named_argument. The following example shows how cartesian MVM is
used in a molecule using named arguments.
There are two Macros $MVM={value1,value2} and $MVM2={valueA,valueB}. The testcase calls a molecule
which simply does cartesian product of these two MVMs.

8.7 Scalar and Vector MVMs

MVMs are defined on the Macros worksheet of the spreadsheet. The syntax to declare an MVM, as we have
already learned, is to prefix it with a single or a double dollar sign($$). When the MVM is used in the TestCases
or Molecules worksheet, it should be prefixed with a double dollar($$) so that ZUG can expand the test case or
Molecule for each value present in that MVM. This is referred to as a vector MVM.

However, if immediate expansion of the MVM is not desired, the MVM can be referred to with a single dollar
sign. This allows the engine to interpret a list as a single text string value (including the braces, and the
separators).

This distinction is useful when calling molecules, where the iteration needs to be delegated to the called
molecule, instead of iterating the caller..

3 Auto-generated testcases can also be executed concurrently, when the GCE property is set for the testcase.

4 Auto-generated molecules can also be executed concurrently, when the GCE property is set for the
molecule.

Chur User Manual Page 33/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

8.8 Indexing Macro values in a molecule without Indexed
MVM
We can use the Index MVM feature in molecule without using Indexed MVM. The following example shows how
we can perform Indexing of two MVMs passed as scalar Macro to a Molecule.

There are three Macros $TYPE={Animal,Fish,Tree,Bird} , $EXAMPLE={Lion,Shark,Oak,Pigeon} and $Cardinal-
ity={1,2,3,4} (where cardinality Macro is for number of elements in the MVMs).

First the molecule FormatList is called twice with a Macros and a Context Variable .This Molecule formats the
MVM and stores it in the Context Variable as a colon separated list (such as Animal:Fish:Tree:Bird).Then the two
formatted list are passed to another Molecule PrintIndexValue which also takes the cardinality Macro and per-
forms the Indexing of the two list and then print the indexed values.

Chur User Manual Page 34/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

9. Multi Valued Context Variable

9.1 Definition

Multi-valued Context Variable (MVCV) contains a list of values, e.g. mvcv1={value1,value2}, or mvcv1={1..10}
where mvcv1 is a context variable.

Multi-valued context variables are often represented by a pair of $ symbols, i.e. $$. Use of the $$ is significant
only while the MVCV is being referenced inside a Testcase, or a Molecule. It is not required when declaring the
context variable.

Multi-valued context variable in CHUR offer a powerful iteration mechanism, and is a core concept.
Whenever MVCVs are encountered inside a testcase or a molecule, that testcase or molecule is executed
multiple times, once for each value of the MVCV.
In the above example, a context variable mvcv1 was declared in the Initialization Block. The testcase MVCV004
is executed twice taking each of the values one at a time.

9.2 Cartesian Expansion

Cartesian MVCV expansion can be useful when all the combinations of all the MVCV present in a test case or
Molecule, need to be exercised. If more than one MVCV is used in a test case then a cartesian product over the
set of values of all the MVCV is calculated. e.g.
If there are two MVCVs:

mvcv1={valueA,valueB}
mvcv2={value1,value2}

and a testcase references both these MVCMs as $$%mvcv1% and $$%mvcv2%, then four test cases will be
generated, one for each of the following values of these MVCVs.

1. [valueA,value1],

2. [valueA,value2],

3. [valueB,value1],

4. [valueB,value2]

Chur User Manual Page 35/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

The above testcase will be executed 4 times -

9.3 MVCV used in Test-cases

When used inside the TestCases worksheet of the spreadsheet, is interpreted to auto-generate unique testcases
using a new combination of values from each of the MVCVs used in the testcase. Test case identifiers are
automatically generated by ZUG, by concatenating the base id with the combination values. The auto-generated
testcases are executed sequentially, unless otherwise specified.5

9.4 MVCV used in Molecules

When used inside the Molecules worksheet of the spreadsheet, invokes the Molecule multiple times
sequentially6, each time with a new combination of values (all executing within the context of the parent test
case).

MVCV used in Molecules using Named Arguments

If you are using named arguments to replace the MVCVs in the molecules, then to use Cartesian MVCV the
named arguments are referenced as ##named_argument. The following example shows how cartesian MVCV
is used in a molecule using named arguments.
There are two MVCVs defined in the Init block : mvcv1={value1,value2} and mvcv2={valueA,valueB}. The
testcase calls a molecule which simply does cartesian product of these two MVCVs.

5 Auto-generated testcases can also be executed concurrently, when the GCE property is set for the testcase.

6 Auto-generated molecules can also be executed concurrently, when the GCE property is set for the same.

Chur User Manual Page 36/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

In the above example we have passed the values of the context variables as %mcvc1% and %mvcv2% to
the molecule MoleculeMVCV. These values are then expanded in the molecule using ##named_argument.
The following example shows how to use MVCVs when passed as reference to a molecule.

It gives the same output for both the testcases.

9.5 Scalar and Vector MVCVs

MVCVs can be defined on the Testcase and Molecules worksheet of the spreadsheet. The syntax to declare an
MVCV, as we have already learned, is to prefix it with a single or a double dollar sign($$). When the MVCV is
used in the TestCases or Molecules worksheet, it should be prefixed with a double dollar($$) so that ZUG can
expand the test case or Molecule for each value present in that MVCV. This is referred to as a vector MVCV.

However, if immediate expansion of the MVCV is not desired, the MVCV can be referred to without any dollar
sign. This allows the engine to interpret a list as a single text string value (including the braces, and the
separators).

This distinction is useful when calling molecules, where the iteration needs to be delegated to the called
molecule, instead of iterating the caller.

Look at the following example-

Chur User Manual Page 37/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

10. Concurrent Execution

CHUR allows test cases, as well as Molecules to execute concurrently. Concurrent execution can be specified in
multiple ways, viz.

10.1 Test case or Molecule concurrency

Property is a column in the Testcases and Molecules worksheets, which allows the testcase designer to specify
the properties of a test case or a Molecule. Multiple properties may be specified as a pipe separated list. GCE,
which is an abbreviation of Generate Concurrent Execution, is a test case or Molecule property. It means that
if a test case or a Molecule contains an MVM (Multi Valued Macro), and the property column specifies GCE,
then the test case (or the Molecule) will be expanded for each combination of the MVMs and will run them
concurrently (i.e. in parallel) instead of sequentially.

10.2 Test step concurrency

Step is a column of the Testcases and Molecules worksheets. This relates to each Action of a Test Case or a
Molecule (but) does not apply to a Verification step. It should normally be a monotonically increasing number for
each test case action. If two or more actions of a test case/Molecule have the same step number, then these
steps may be executed concurrently.7

10.3 Thread safe context variables

CHUR does not support the notion of scope, so, different threads creating or updating a context variable with the
same name would conflict with other existing variables. To get around this, CHUR supports the notion of a thread
specific instance of a context variable. It is the responsibility of the Test Suite designer to create and use thread
specific context variables, when appropriate.

A ## (double hash) appended to the name of a context variable, automatically refers to the context variable with
the thread id appended to the name, thus creating a unique instance of the variable. When a thread specific
context variable is referenced in the main thread, ## equates to a null string.

10.4 Passing thread safe context variables as arguments

We refer to a thread safe context variable, for the purposes of argument passing in the following ways, viz

context_variable_name## - this is a thread specific instance of the context variable. CHUR will automatically
replace ## with the thread id. This is equivalent to the scheme of passing by reference, except that CHUR will
pass the thread specific name of the context variable.

%context_variable_name##% - this is the value of the thread specific instance of the context variable. CHUR
will automatically replace ## with the thread id and retrieve the thread specific value of the context variable.

7 The number of threads available for concurrent execution, is a global setting. The concurrent execution of
test steps or test cases is limited by the number of threads available. When the threads are exceeded,
execution is sequentialized.

http://automature.com/twiki/bin/view/DEV-ZUG/GenerateConcurrencyExecution

Chur User Manual Page 38/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

11. Negative Testing

11.1 Definition
Testing the system using negative data is called negative testing, e.g. testing the password where it
should be minimum of 8 characters so testing it using 6 characters is negative testing.

11.2 How To Use

To use any test step as a negative testing, put the word “negative” in property column. Irrespective of testcase
sheet or molecules sheet , this feature can be used. This negative testing feature will only work for atoms not for
any molecule. When the atom fails and shows the Exception in console if negative property is set to it, then
ZUG_EXCEPTION context variable will be set with the Exception message and the test step will pass.

We can put “neg-action” for testing an action step and “neg-verify” for testing a verify step. They will set
exception messages separately in ZUG_ACTION_EXCEPTION and ZUG_VERIFY_EXCEPTION.

Example-

In the following test case, we are doing negative testing for Compare atom by giving incorrect number of
arguments. The error given by Zug is stored in the context variable ZUG_EXCEPTION (which is an in-built
context variable). In the next test step, we are checking whether the error thrown was Argument mismatch or not.

To be noted –

If we call a molecule in a test case stating negative property beside the molecule, the test case will fail. The
negative property works only for test steps.

The following figure shows the various outcomes of a test step for different properties of Zug.

Example:

Chur User Manual Page 39/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

In the following test case, we have used the Negative property and have deliberately made the
action and verification to fail. Even though the action and the verifications fail, the status of the test
case is pass.

(Enlarge to view)

In the next example, we have used the Negative-Action property and have deliberately made the
action fail and then verify that the correct error message is displayed. The status of the test case is
pass.

(Enlarge to view)

In the next example, we have used the Negative-Verify property and have deliberately made the
action pass and verification fail. The status of the test case is pass.

Chur User Manual Page 40/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

12.NameSpaces

ZUG supports the inclusion of external worksheets that contain Macros, Prototypes or Molecules. Since, such
inclusions can potentially lead to conflicts in names, imported names are placed inside specially named
containers, called namespaces. All names declared within a namespace must be unique, and are referenced by
prefixing the name of the entity with the name of the container, where it is defined.

Namespaces promote reuse of Molecules, and atoms, by providing libraries of pre-built containers.

To call the Molecules use '&' sign and to call the macros use '$' sign before the namespaces. For instance, to
refer to an external Macro you should write $Spreadseet_Name.Macro_Name and to refer to an external
Molecule you should write &Spreadsheet_Name.Molecule_Name, where Spreadseet_Name is the name of the
external spreadsheet file, where the macro, or the molecule has been defined.

Zug can include multiple external files from the Config Sheet.

To call any molecule or any macro from an external file, the external file must be included in the Config
sheet first.

Example -

12.1 Calling a Molecule from a single external worksheet.

The following example shows how to call a Molecule from an external file (which is IncludeFile.xls.)

The macros $value1 and $value2 are passed to the Molecule Mol which is written in IncludeFile.xls
spreadsheet. Here is the snapshot of the molecule sheet in the external file. It simply compares the two values
passed from the testcase.

Chur User Manual Page 41/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

12.2 Calling external macros from an external worksheet.

The following example shows how to call two external macros from an external worksheet (which is
IncludeFile.xls.)

The macros $externalValue1 and $externalValue2 are written in the macros sheet of the external sheet

IncludeFile.xls.

12.3 Calling two different macros from different external worksheets.

The following example shows how to call two external macros from from two different external worksheet (which

are IncludeFile.xls and ThirdIncludeFIle.xls) The IncludeFile.xls contains $externalValue macro in the macros

sheet and the ThirdIncludeFile.xls contains $extValue in its macros sheet. Here we compare these two macros

written in different files in a single testcase.

Chur User Manual Page 42/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

12.4 Multi Level Include Files

Zug can include files in Multi level. i.e. Zug can include an external file
which can again include another external file. In the followling example
we have used three test suites.Zug.xls contains the testcase which calls
upon a molecule Mol2 in the IncludeFile.xls. The molecule Mol2 calls
upon another molecule Mol in the FourthIncludeFile.xls. The config
sheet of Zug.xls includes the IncludeFile.xls but not
FourthIncludeFile.xls. The IncludeFile.xls includes the
FourthIncludeFile.xls

Here is the snapshot of the testcase written in Zug.xls file. It calls the
molecule Mol2.

Here is the snapshot of the molecule Mol2 written in IncludeFile.xls file. It calls the molecule Mol2.

Here is the snapshot of the molecule Mol written in FourthIncludeFile.xls file. Here val1 and val2 contains the
values of the macros $value1 and $value2 written in the Zug.xls file.

Chur User Manual Page 43/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

13. Command Line Options
ZUG supports various command line options. Some of them are

13.1 -verbose

-verbose option is used to display the execution result of the test suite in the console.

13.2 -include

As we have seen that we can include test suite by providing test suite's file name or path name along with the file
name in the config sheet. Another way of including test suite is by including test suites at run time using the -in-
clude command line option .We can include multiple test suites from command line using the -include option. The
test suites mentioned in the -include option must be separated by a comma. For example

>runzug E:\testsuites\testCMDInclude.xls -verbose -include=IncludeS2.xls,IncludeS1.xls

Here IncludeS1.xls and IncludeS2.xls are being included at runtime.Thus it provides a dynamic way of including
test suites.Also the files included from command line has a higher prioirty over the files included from the config
sheet.If a file is is mentioned in the include section of config sheet and a file with same name is being included
from command line then the file mentioned in the config sheet is discarded and the one included from command
line is used in the execution.

One more powerful feature of this option is to provide name spaces to the test suite included from command
line(run time).The default name space of a test suite is the name of the test suite file .Consider the above
example ,in this case the name space will be testCMDInclude. However ZUG provides another way of giving
name space to the test suites included at run time .We can override the default name space of a test suite in-
cluded at run time using the -include option. The syntax for giving name space in the -include option is

-include=namespace1#filename1,namespace2#filename2

where the file name can be either a file name or file path along with the file name.

13.3 -macrocolumn

We can have multiple value column in a test suite for a macro .At run time we can select a particular column

using the -macrocolumn option. The syntax for -macrocolumn is

-macrocolumn=file identifier:column number, file identifier:column number

where the file identifier is the file name,default name space or the optional name space provided in the -include
option. If we have provided any optional name space in the -include option then it should be the file identifier in
the -macrocolumn.

Chur User Manual Page 44/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

If any cell of the selected column is empty then it takes the value of the default column cell(1st column i.e, the
“value” column).For example if we run the above test suite by giving option in the -macrocolumn to choose the 2nd

column of the macro value then the substituted value of $field will be {username,password}.

Chur User Manual Page 45/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

14. ZUG Logs

ZUG records output from the test suite execution in different text files. The files are stored in the default location
(%appdata% under Windows) in a directory called ZugLogs in case of Linux it is saved under home/<users>
directory with the same name. The log files can be archived in a central repository, accessible to Zermatt. Please
refer to Zermatt User Manual for details on how to configure the location of the archive.

14.1 Result Log
This log records the console output, and contains the sequence in which test cases have been executed, the
specific molecules and atoms that were invoked, along with the actual arguments that they were invoked with.

14.2 Debug Log
This log is for Automature's internal use only.

14.3 Error Log
This log contains a summary of any errors encountered by the atoms and molecules during test case execution.

14.4 Primitive Log
This log contains information specifically written by the executing atoms. Atoms can choose to provide custom
trace information, or other useful output regarding their execution, using the ZugAPI's logging method.

Chur User Manual Page 46/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

15.Using External Frameworks as Atom Libraries
We can also call methods in external frameworks written in Java from CHUR as atoms. These external atoms
when invoked from ZUG are run as In-Process atom. For this to work need to provide ZUG some extra configura-
tion settings. In the ZugINI.xml we have to provide the location and some configuration detail of a Wrapper.

This wrapper provides a layer of abstraction for the CHUR programmers and given the signature of the method
inside the framwork we can call it as an atom without bothering about any other information. Below given is the
snapshot of the ZUGINI.xml in which the configuration of the Wrapper is given.

Note:In short and simple we can call any method of a class(for now its restricted to java class) if we know the
signature of the method.

The convention for using the Wrapper in the test suite is shown below:

 Wrapper.alaisname.atomname

Wrapper is the keyword,alias name is a name given to a particular class in the wrapper.txt (the configuration file
whose role is described later in the topic) and the atom name is the name of the method to be invoked of that
particular class. Now if the atom invoked returns some thing ,the returned contents are stored in a context vari-
able which is passed as the last argument of the atom. If the atom returns a simple text then the text is stored in
the context variable and if it returns a complex object then a handle to that object is returned in the context vari-
able which can be used further to pass as an argument to another atom or to call the atom of that particular ob-
ject if needed.

When we call an atom of a class for the first time we send “none” as the first argument ,seeing the none keyword
the wrapper creates an object of that class. The handle to the that object is then stored in the context variable
which is passed as last argument of the atom(if the atom does not return any thing) or as the second last argu-
ment(if the atom returns any thing).

To use this wrapper we need to a write test suite that uses external atom framework's methods. Below is a
sample test case for using external atoms of an atom framework. In the given test case we are using some rest
services

Chur User Manual Page 47/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Here we have used two Classes rest and restExecutor. In the second test step we are calling an atom setRe-
questScheme of the rest. The setRequestScheme atom's signature does not return any thing. But since we
are creating an object of the rest by sending “none” as the first argument it will return the handle of that newly
created object in the context variable “handle” which is passed as the last argument. In the third ,fourth and fifth
test step we are setting the value of the rest object (which was created in the 2nd test step) by sending the handle
of that object as the first argument.

Similarly in the fifth test step we are calling the restExecutor's execute atom and passing the rest object as an ar-
gument and since we are creating an object of the restExecutor by sending none as the first argument it will re-
turn the object handle in the handle1 context variable.

The execute atom set some data values of the rest object that is passed to it that we are retrieving in the next

step by calling the getActualResponseBody of that rest object. This atom returns a text which is stored in re-
sponse context variable and in the verification section we are just printing the value of response context variable

Below is the console output of the execution of the above test suite

Chur User Manual Page 48/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Configuring Wrapper.txt:

To use the services of external atom frame work we must configure an additional configuration file called wrap-
per.txt. It is a configuration file which is used by the Wrapper. This file holds the mapping of the alias name (to
the fully qualified class name) along the with path to the external atom framework and some other information in
a “key=value” format. Given below is the snapshot of a sample wrapper.txt for the above example test suite

The jarpath is the key whose value is the path to the external framework jar.vmarg is the runtime argument to the
VM.libdir is used in case if we want to include some other external jar file. Its value is the path to the directory
where all the jar files are placed.The rest are the alias names along with thier mapping to the respective classes.

Chur User Manual Page 49/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

16.Miscellaneous

16.1 Ignore test Step feature
Ignore test step as the name suggests ignores the out come of any test step. If we place ignore in the property of
any test step then irrespective of weather the test step passes or fails, the outcome of the test step doesn't af-
fects the execution result of the test case.

How to use- To use the ignore feature just write “ignore” in the property of any test step. Irrespective of test-

case sheet or molecules sheet , this feature can be used.In the following test case we are testing the Ignore
feature for In-Proecss atom.We are just comparing a string with another string and this test step will fail.

As we can see we have stored a string “test” in a context variable named CV and we are comparing it with an-
other string “Testing” ,since the text are not equal in normal circumstances the test step should fail so does the
test case. But since we put ignore in the test step property it should not affect the test case and the test case
should pass.Now lets run this test suite

Chur User Manual Page 50/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Now since the property of the test step was ignore thus it should not affect the test case. So in the above execu-
tion detail we can see in that particular test step an exception message is given that the string does not match
but it does not affects the result of the test case and the test case passes

16.2 ROS (Return on Success)
Return on success is a test step property which can only be used in the Molecules. When used in the property of
a test step in a molecule and if that test step executes successfully then ZUG skips the rest of the test steps of
that molecule and return to the caller of the molecule.

How to use- To use the ROS feature we just need to write ROS in the property of the test step of a mo-

lecule. In the below given example we are using a context variable String and initializing it with the value 1 and
passing it to the molecule.

TestCase ID Description property Step Action ActionArg_1 ActionArg_2 Verify VerifyArg_1 VerifyArg_2

TC001 Setcontextvar String=1

&MOL1 String Zstring.compare %String% 11

UnSetcontextvar String

Chur User Manual Page 51/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

In the molecule we have appended 1 twice to the String context variable but in the 2nd test step we have used the
ROS property. So It should append 1 only once to the String context variable and must return to the test case
skipping rest of the test steps of the molecule ,thus the print and the last appendtocontextvar test step must not
execute.

In the above console output we can see clearly that it skips rest of the test step of the Molecule and returns to the
TestCase when the test step having ROS feature executes successfully.

16.3 ROF (Return on Failure)
Return on failure is very similar to to the test step property ROS. It can only be used in the test step property of a
Molecule. When used in the property of a test step in the molecule and if that test step fails then ZUG skips rest
of the test step of that molecule and return to the caller of the molecule. The failure of the that test step does not
affects the outcome of the test case. However it does give a exception message where the failure occurs ,stating
the reason of failure of the test step.

How to use- To use the ROF feature we just need to write ROF in the property of the test step of a mo-
lecule. In the below given example we are using a context variable String and initializing it to one and passing it
to the molecule.

Molecule ID Description Property Step Action ActionArg_1 ActionArg_2 Verify VerifyArg_1 VerifyArg_2

MOL1 #define_args String
ROS AppendtoContextvar #String 1 Zstring.compare %#String% 11

print %#String%
AppendtoContextvar #String 1 Zstring.compare %#String% 111

TestCase ID Description property Step Action ActionArg_1 ActionArg_2 Verify VerifyArg_1 VerifyArg_2

TC001 Setcontextvar String=1

&MOL2 String Zstring.compare %String% 11

UnSetcontextvar String

Chur User Manual Page 52/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

In the molecule the print atom is misspelled as prin and in that test step we have used ROF in the property. Thus
this test step will fail and ZUG will skip the rest of the test step giving an exception message.

Note: If the test step having ROF doesn't fail then ZUG will execute the rest of the test steps of the Molecule.

Molecule ID Description Property Step Action ActionArg_1 ActionArg_2 Verify VerifyArg_1 VerifyArg_2

MOL2 #define_args String
AppendtoContextvar #String 1 Zstring.compare %#String% 11

ROF prin %#String%
AppendtoContextvar #String 1 Zstring.compare %#String% 11

Chur User Manual Page 53/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

17. Reporting test results .

DAVOS is Automature's Webservices interface into ZERMATT, the Planning and Reporting Tool. Normally, test
case designers need not be aware of the existence of DAVOS, since ZUG - the engine handles the reporting of
test cases written in CHUR implicitly.

Under special circumstances, if the testcase needs to store special data, then DAVOS webservices atoms
provide a mechanism for doing so. For more information on this, refer to the DAVOS Reference Manual.

To report to the database you need to configure the “configsheet” of your test suites.

If you the mandatory fields are not set and still you want to report to database then it will prompt for the database
user name and password credentials.

To report you need to provide the command line switches of ZUG viz. -testplanid -topologysetid. These switches
are mandatory for reporting.

Chur User Manual Page 54/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

18. Glossary

Action Arguments

The behavior of an action can be modified by sending it certain extra information. This extra information is sent
as a list of “arguments”.

Action Step

A test case is a sequence of one or more Actions. An Action may be a Test Action, or a Verification Action. Each
Action may take as many arguments as necessary. Actions carry out the logic of a test case, and also can be
used to verify the outcomes of Test Actions.

Atom

Atoms are the basic units of execution in CHUR. They are entities, such as programs or scripts that may be
executed at a command line level in a shell (e.g. the Command Prompt in Windows, or bash in Linux). Atoms
may be invoked from the Test Cases or Molecules worksheets in the Test Suite spreadsheet. An example of an
atom can be a program that enters text into a form field inside a web page, or can simulate a button click. In
CHUR atoms are prefixed with the sign @.

Example: @ClickLinkByHref.rb

In this example ClickLinkByHref.rb is an atom written in Ruby, that allows the testcase to click on a link
contained in a web page. Atoms can take any number of arguments, to qualify their action.

An atom is expected to return an exit status code that implicitly tells ZUG if the action was successful. By
convention, a non-zero status is interpreted as a failure. When ZUG encounters a failure status, it automatically
invokes the appropriate clean up steps specified in the CHUR spreadsheet for the corresponding test case.

Exceptions

In CHUR, when atoms return an error, an exception happens, causing sequential execution to be suspended,
and cleanup actions to be performed. When a molecule encounters an exception, control is transferred back to
the calling molecule, or test case, after executing the cleanup steps inside that molecule. When control is
transferred back, execution does not resume sequentially. Instead, the caller's cleanup steps are executed.
When a testcase encounters an exception, the testcase's cleanup steps are executed, and then the next test
case is started.

Molecule

Molecules are a collection of atoms, or other Molecules, in a sequence, with the added ability to express more
complex logic. Molecules may call atoms directly, or through other nested Molecules. Test Cases, themselves
could be considered Molecules themselves, except that no other test case or Molecule can call them. Example of
a Molecule can be to simulate a user login, by using the atom in the example above. In CHUR Molecules are
prefixed with the sign &

Example: &TwikiLogin

Note that, Molecules, unlike atoms, can only be executed within ZUG. Also, Molecules do not return any exit
status.

Namespace

CHUR allows test case designers to reuse test logic and data. Reuse involves the ability to package
and distribute reusable molecules and macros in separate spreadsheet files, and referenced from
the spreadsheet where the test cases are specified. Since names used in such distributions may
not be unique, and therefore cause unexpected behavior, CHUR uses the concept of Namespaces,
to make names unique. Therefore, when referring to an entity, such as a macro, or a molecule,
that is defined in an external file, the name must be prefixed with the name of the file, where the
entity is defined. This allows names, that are unique within the file, to be also globally unique.

Chur User Manual Page 55/ 55

Author: MD SARFARAZ KHAN Version: 6.5 Date 2013/05/05

Property

Testcase and molecules can have associated properties, that can be used to control certain
behavior. Propeeties can be used to tell the engine to execute these entities in specific ways, e.g.
Concurrently, or sequentially.

Test Case

A test case is a collection of steps whose purpose is to verify a certain feature of a product. Test-cases
are the smallest units of reporting about the execution of tests.

Test Cycle

During the course of a project, multiple test sessions may be executed, related to a single test plan. These
sessions would have several attributes in common, but some may differ. Usually, the difference would be the
build of the product under test. These sessions are known as Test Cycles.

A Test Case would record only one result within the scope of a single test cycle. Multiple executions of
the same test case within a single cycle, would overwrite previous results. ZUG, unless specifically
requested to do otherwise, always creates a new test cycle, each time a test suite is executed.

Test Plan

A test plan is a plan of how a set of features shall be tested within the scope of a project schedule. A Test
Plan is defined in Zermatt, and provides a context within which the test outcomes may be stored. Note
that Test Plans are only relevant if the results are expected to be stored.

Test Step

A test case is a sequence of one or more Steps. A Test Step corresponds to a single row in a spreadsheet, that
is not empty, or a comment. A test step results in an invocation of an Atom or a Molecule. A test step may be
explicitly enumerated. If enumerated, it should be a monotonically increasing number for each step. If two steps
of a test case are given the same number, then the two steps are intended for concurrent execution.

Some of these steps may be designated initialization steps, others may be designated to be cleanup steps.
The numbers are post-fixed with the letters “i” or “c” respectively. Unless they are explicitly designated to be
such, test steps are understood to be normal actions carrying out the logic of the testcase.

Test Steps may implement two kinds of logic. The logic may be integral to the execution of the test itself, or it
may verify the intermediate or final state of the system under test.

Test Suite

A test suite is a collection of test cases, grouped according to some criteria, such as a related set of
requirements. In CHUR, a test suite is represented by a single spreadsheet file, containing one or more
test cases. The test suite file may make use of other files, where additional dependencies may have been
specified. However, the test cases themselves must reside in a single file.

Verification Step

Each Action of a Test Case may consist of none, one, or several Verification steps. Verification Steps may
reference verification Molecules or verification atoms. And each Verification step may take several arguments as
needed. As with other atoms, verification atoms are also expected to return an exit status code that implicitly tells
ZUG if the verification was successful. By convention, a non-zero status code is interpreted as a failure. When
ZUG encounters a failure status in verification, it automatically invokes the corresponding clean up steps.

In CHUR, verification actions, and their corresponding arguments, are identified by a set of columns explicitly set
aside for this purpose.

Verification Arguments

The behavior of a verification can be modified by sending it certain extra information. This extra information is
sent as a list of “arguments”.

	1. Introduction
	1.1 Document Purpose
	1.2 Intended Audience

	2. Anatomy of an Automation Test Suite
	2.3 TestCases and Molecules Worksheets
	2.4 Prototypes

	3. Writing a simple Test Case
	3.3 Flow of Execution
	3.4 Command line execution

	4. Built-in Atoms
	4.1 Context Variable Atoms
	4.1.1 SetContextVar
	4.1.2 UnSetContextVar

	4.1.3 AppendToContextVar

	4.2 XML Parsing Atoms
	4.3 Web Automation Atoms
	4.4 Print Atom
	4.5 GetValueAtIndex Atom
	4.6 GetCurrentIndex Atom
	4.7 GetValueAt Atom

	5. Exception Handling
	5.1 Test case or Molecule exception handling
	5.2 Test suite exception handling

	6. Context variables
	6.1 Definition
	6.2 Declaring a Context variable
	6.3 Pass arguments by value or by reference
	6.4 Reading and Altering Context variable value from atoms (ZUG API)
	6.5 Zuoz pearls
	6.6 Appending values to a Context variable
	6.7 Destroying a Context variable
	6.8 ZUG test environment variables

	7. Molecules
	7.1 Definition
	7.2 Designing a Molecule
	7.3 Positional and named arguments

	8. Multi-valued Macros
	8.1 Definition
	8.2 Cartesian MVM expansion
	8.3 Indexed MVM expansion
	8.4 Nested MVMs
	8.5 MVM used in Test-cases
	8.6 MVM used in Molecules
	MVM used in Molecules using Named Arguments

	8.7 Scalar and Vector MVMs
	8.8 Indexing Macro values in a molecule without Indexed MVM

	9. Multi Valued Context Variable
	9.1 Definition
	9.2 Cartesian Expansion
	9.3 MVCV used in Test-cases
	9.4 MVCV used in Molecules
	MVCV used in Molecules using Named Arguments

	9.5 Scalar and Vector MVCVs

	10. Concurrent Execution
	10.1 Test case or Molecule concurrency
	10.2 Test step concurrency
	10.3 Thread safe context variables
	10.4 Passing thread safe context variables as arguments

	11. Negative Testing
	11.1 Definition
	11.2 How To Use

	12.NameSpaces
	12.1 Calling a Molecule from a single external worksheet.
	12.2 Calling external macros from an external worksheet.
	12.3 Calling two different macros from different external worksheets.
	12.4 Multi Level Include Files

	13. Command Line Options
	13.1 -verbose
	13.2 -include
	13.3 -macrocolumn

	14. ZUG Logs
	14.1 Result Log
	14.2 Debug Log
	14.3 Error Log
	14.4 Primitive Log

	15.Using External Frameworks as Atom Libraries
	16.Miscellaneous
	16.1 Ignore test Step feature
	16.2 ROS (Return on Success)
	16.3 ROF (Return on Failure)

	17. Reporting test results .
	18. Glossary

